forked from libusb/libusb
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathxusb.c
1256 lines (1149 loc) · 42.4 KB
/
xusb.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* xusb: Generic USB test program
* Copyright © 2009-2012 Pete Batard <pete@akeo.ie>
* Contributions to Mass Storage by Alan Stern.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "libusb.h"
#if defined(_MSC_VER)
#define snprintf _snprintf
#define putenv _putenv
#endif
// Future versions of libusb will use usb_interface instead of interface
// in libusb_config_descriptor => catter for that
#define usb_interface interface
#ifndef ARRAYSIZE
#define ARRAYSIZE(array) (sizeof(array) / sizeof(array[0]))
#endif
// Global variables
static bool binary_dump = false;
static bool extra_info = false;
static bool force_device_request = false; // For WCID descriptor queries
static const char* binary_name = NULL;
static inline void msleep(int msecs)
{
#if defined(_WIN32)
Sleep(msecs);
#else
const struct timespec ts = { msecs / 1000, (msecs % 1000) * 1000000L };
nanosleep(&ts, NULL);
#endif
}
static void perr(char const *format, ...)
{
va_list args;
va_start (args, format);
vfprintf(stderr, format, args);
va_end(args);
}
#define ERR_EXIT(errcode) do { perr(" %s\n", libusb_strerror((enum libusb_error)(errcode))); return -1; } while (0)
#define CALL_CHECK(fcall) do { int _r=fcall; if (_r < 0) ERR_EXIT(_r); } while (0)
#define CALL_CHECK_CLOSE(fcall, hdl) do { int _r=fcall; if (_r < 0) { libusb_close(hdl); ERR_EXIT(_r); } } while (0)
#define B(x) (((x)!=0)?1:0)
#define be_to_int32(buf) (((buf)[0]<<24)|((buf)[1]<<16)|((buf)[2]<<8)|(buf)[3])
#define RETRY_MAX 5
#define REQUEST_SENSE_LENGTH 0x12
#define INQUIRY_LENGTH 0x24
#define READ_CAPACITY_LENGTH 0x08
// HID Class-Specific Requests values. See section 7.2 of the HID specifications
#define HID_GET_REPORT 0x01
#define HID_GET_IDLE 0x02
#define HID_GET_PROTOCOL 0x03
#define HID_SET_REPORT 0x09
#define HID_SET_IDLE 0x0A
#define HID_SET_PROTOCOL 0x0B
#define HID_REPORT_TYPE_INPUT 0x01
#define HID_REPORT_TYPE_OUTPUT 0x02
#define HID_REPORT_TYPE_FEATURE 0x03
// Mass Storage Requests values. See section 3 of the Bulk-Only Mass Storage Class specifications
#define BOMS_RESET 0xFF
#define BOMS_GET_MAX_LUN 0xFE
// Microsoft OS Descriptor
#define MS_OS_DESC_STRING_INDEX 0xEE
#define MS_OS_DESC_STRING_LENGTH 0x12
#define MS_OS_DESC_VENDOR_CODE_OFFSET 0x10
static const uint8_t ms_os_desc_string[] = {
MS_OS_DESC_STRING_LENGTH,
LIBUSB_DT_STRING,
'M', 0, 'S', 0, 'F', 0, 'T', 0, '1', 0, '0', 0, '0', 0,
};
// Section 5.1: Command Block Wrapper (CBW)
struct command_block_wrapper {
uint8_t dCBWSignature[4];
uint32_t dCBWTag;
uint32_t dCBWDataTransferLength;
uint8_t bmCBWFlags;
uint8_t bCBWLUN;
uint8_t bCBWCBLength;
uint8_t CBWCB[16];
};
// Section 5.2: Command Status Wrapper (CSW)
struct command_status_wrapper {
uint8_t dCSWSignature[4];
uint32_t dCSWTag;
uint32_t dCSWDataResidue;
uint8_t bCSWStatus;
};
static const uint8_t cdb_length[256] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
06,06,06,06,06,06,06,06,06,06,06,06,06,06,06,06, // 0
06,06,06,06,06,06,06,06,06,06,06,06,06,06,06,06, // 1
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 2
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 3
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 4
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 5
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // 6
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // 7
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, // 8
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, // 9
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, // A
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, // B
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // C
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // D
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // E
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // F
};
static enum test_type {
USE_GENERIC,
USE_PS3,
USE_XBOX,
USE_SCSI,
USE_HID,
} test_mode;
static uint16_t VID, PID;
static void display_buffer_hex(unsigned char *buffer, unsigned size)
{
unsigned i, j, k;
for (i=0; i<size; i+=16) {
printf("\n %08x ", i);
for(j=0,k=0; k<16; j++,k++) {
if (i+j < size) {
printf("%02x", buffer[i+j]);
} else {
printf(" ");
}
printf(" ");
}
printf(" ");
for(j=0,k=0; k<16; j++,k++) {
if (i+j < size) {
if ((buffer[i+j] < 32) || (buffer[i+j] > 126)) {
printf(".");
} else {
printf("%c", buffer[i+j]);
}
}
}
}
printf("\n" );
}
static char* uuid_to_string(const uint8_t* uuid)
{
static char uuid_string[40];
if (uuid == NULL) return NULL;
snprintf(uuid_string, sizeof(uuid_string),
"{%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x}",
uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7],
uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15]);
return uuid_string;
}
// The PS3 Controller is really a HID device that got its HID Report Descriptors
// removed by Sony
static int display_ps3_status(libusb_device_handle *handle)
{
uint8_t input_report[49];
uint8_t master_bt_address[8];
uint8_t device_bt_address[18];
// Get the controller's bluetooth address of its master device
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, 0x03f5, 0, master_bt_address, sizeof(master_bt_address), 100));
printf("\nMaster's bluetooth address: %02X:%02X:%02X:%02X:%02X:%02X\n", master_bt_address[2], master_bt_address[3],
master_bt_address[4], master_bt_address[5], master_bt_address[6], master_bt_address[7]);
// Get the controller's bluetooth address
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, 0x03f2, 0, device_bt_address, sizeof(device_bt_address), 100));
printf("\nMaster's bluetooth address: %02X:%02X:%02X:%02X:%02X:%02X\n", device_bt_address[4], device_bt_address[5],
device_bt_address[6], device_bt_address[7], device_bt_address[8], device_bt_address[9]);
// Get the status of the controller's buttons via its HID report
printf("\nReading PS3 Input Report...\n");
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x01, 0, input_report, sizeof(input_report), 1000));
switch(input_report[2]){ /** Direction pad plus start, select, and joystick buttons */
case 0x01:
printf("\tSELECT pressed\n");
break;
case 0x02:
printf("\tLEFT 3 pressed\n");
break;
case 0x04:
printf("\tRIGHT 3 pressed\n");
break;
case 0x08:
printf("\tSTART pressed\n");
break;
case 0x10:
printf("\tUP pressed\n");
break;
case 0x20:
printf("\tRIGHT pressed\n");
break;
case 0x40:
printf("\tDOWN pressed\n");
break;
case 0x80:
printf("\tLEFT pressed\n");
break;
}
switch(input_report[3]){ /** Shapes plus top right and left buttons */
case 0x01:
printf("\tLEFT 2 pressed\n");
break;
case 0x02:
printf("\tRIGHT 2 pressed\n");
break;
case 0x04:
printf("\tLEFT 1 pressed\n");
break;
case 0x08:
printf("\tRIGHT 1 pressed\n");
break;
case 0x10:
printf("\tTRIANGLE pressed\n");
break;
case 0x20:
printf("\tCIRCLE pressed\n");
break;
case 0x40:
printf("\tCROSS pressed\n");
break;
case 0x80:
printf("\tSQUARE pressed\n");
break;
}
printf("\tPS button: %d\n", input_report[4]);
printf("\tLeft Analog (X,Y): (%d,%d)\n", input_report[6], input_report[7]);
printf("\tRight Analog (X,Y): (%d,%d)\n", input_report[8], input_report[9]);
printf("\tL2 Value: %d\tR2 Value: %d\n", input_report[18], input_report[19]);
printf("\tL1 Value: %d\tR1 Value: %d\n", input_report[20], input_report[21]);
printf("\tRoll (x axis): %d Yaw (y axis): %d Pitch (z axis) %d\n",
//(((input_report[42] + 128) % 256) - 128),
(int8_t)(input_report[42]),
(int8_t)(input_report[44]),
(int8_t)(input_report[46]));
printf("\tAcceleration: %d\n\n", (int8_t)(input_report[48]));
return 0;
}
// The XBOX Controller is really a HID device that got its HID Report Descriptors
// removed by Microsoft.
// Input/Output reports described at http://euc.jp/periphs/xbox-controller.ja.html
static int display_xbox_status(libusb_device_handle *handle)
{
uint8_t input_report[20];
printf("\nReading XBox Input Report...\n");
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x00, 0, input_report, 20, 1000));
printf(" D-pad: %02X\n", input_report[2]&0x0F);
printf(" Start:%d, Back:%d, Left Stick Press:%d, Right Stick Press:%d\n", B(input_report[2]&0x10), B(input_report[2]&0x20),
B(input_report[2]&0x40), B(input_report[2]&0x80));
// A, B, X, Y, Black, White are pressure sensitive
printf(" A:%d, B:%d, X:%d, Y:%d, White:%d, Black:%d\n", input_report[4], input_report[5],
input_report[6], input_report[7], input_report[9], input_report[8]);
printf(" Left Trigger: %d, Right Trigger: %d\n", input_report[10], input_report[11]);
printf(" Left Analog (X,Y): (%d,%d)\n", (int16_t)((input_report[13]<<8)|input_report[12]),
(int16_t)((input_report[15]<<8)|input_report[14]));
printf(" Right Analog (X,Y): (%d,%d)\n", (int16_t)((input_report[17]<<8)|input_report[16]),
(int16_t)((input_report[19]<<8)|input_report[18]));
return 0;
}
static int set_xbox_actuators(libusb_device_handle *handle, uint8_t left, uint8_t right)
{
uint8_t output_report[6];
printf("\nWriting XBox Controller Output Report...\n");
memset(output_report, 0, sizeof(output_report));
output_report[1] = sizeof(output_report);
output_report[3] = left;
output_report[5] = right;
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_OUT|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_SET_REPORT, (HID_REPORT_TYPE_OUTPUT<<8)|0x00, 0, output_report, 06, 1000));
return 0;
}
static int send_mass_storage_command(libusb_device_handle *handle, uint8_t endpoint, uint8_t lun,
uint8_t *cdb, uint8_t direction, int data_length, uint32_t *ret_tag)
{
static uint32_t tag = 1;
uint8_t cdb_len;
int i, r, size;
struct command_block_wrapper cbw;
if (cdb == NULL) {
return -1;
}
if (endpoint & LIBUSB_ENDPOINT_IN) {
perr("send_mass_storage_command: cannot send command on IN endpoint\n");
return -1;
}
cdb_len = cdb_length[cdb[0]];
if ((cdb_len == 0) || (cdb_len > sizeof(cbw.CBWCB))) {
perr("send_mass_storage_command: don't know how to handle this command (%02X, length %d)\n",
cdb[0], cdb_len);
return -1;
}
memset(&cbw, 0, sizeof(cbw));
cbw.dCBWSignature[0] = 'U';
cbw.dCBWSignature[1] = 'S';
cbw.dCBWSignature[2] = 'B';
cbw.dCBWSignature[3] = 'C';
*ret_tag = tag;
cbw.dCBWTag = tag++;
cbw.dCBWDataTransferLength = data_length;
cbw.bmCBWFlags = direction;
cbw.bCBWLUN = lun;
// Subclass is 1 or 6 => cdb_len
cbw.bCBWCBLength = cdb_len;
memcpy(cbw.CBWCB, cdb, cdb_len);
i = 0;
do {
// The transfer length must always be exactly 31 bytes.
r = libusb_bulk_transfer(handle, endpoint, (unsigned char*)&cbw, 31, &size, 1000);
if (r == LIBUSB_ERROR_PIPE) {
libusb_clear_halt(handle, endpoint);
}
i++;
} while ((r == LIBUSB_ERROR_PIPE) && (i<RETRY_MAX));
if (r != LIBUSB_SUCCESS) {
perr(" send_mass_storage_command: %s\n", libusb_strerror((enum libusb_error)r));
return -1;
}
printf(" sent %d CDB bytes\n", cdb_len);
return 0;
}
static int get_mass_storage_status(libusb_device_handle *handle, uint8_t endpoint, uint32_t expected_tag)
{
int i, r, size;
struct command_status_wrapper csw;
// The device is allowed to STALL this transfer. If it does, you have to
// clear the stall and try again.
i = 0;
do {
r = libusb_bulk_transfer(handle, endpoint, (unsigned char*)&csw, 13, &size, 1000);
if (r == LIBUSB_ERROR_PIPE) {
libusb_clear_halt(handle, endpoint);
}
i++;
} while ((r == LIBUSB_ERROR_PIPE) && (i<RETRY_MAX));
if (r != LIBUSB_SUCCESS) {
perr(" get_mass_storage_status: %s\n", libusb_strerror((enum libusb_error)r));
return -1;
}
if (size != 13) {
perr(" get_mass_storage_status: received %d bytes (expected 13)\n", size);
return -1;
}
if (csw.dCSWTag != expected_tag) {
perr(" get_mass_storage_status: mismatched tags (expected %08X, received %08X)\n",
expected_tag, csw.dCSWTag);
return -1;
}
// For this test, we ignore the dCSWSignature check for validity...
printf(" Mass Storage Status: %02X (%s)\n", csw.bCSWStatus, csw.bCSWStatus?"FAILED":"Success");
if (csw.dCSWTag != expected_tag)
return -1;
if (csw.bCSWStatus) {
// REQUEST SENSE is appropriate only if bCSWStatus is 1, meaning that the
// command failed somehow. Larger values (2 in particular) mean that
// the command couldn't be understood.
if (csw.bCSWStatus == 1)
return -2; // request Get Sense
else
return -1;
}
// In theory we also should check dCSWDataResidue. But lots of devices
// set it wrongly.
return 0;
}
static void get_sense(libusb_device_handle *handle, uint8_t endpoint_in, uint8_t endpoint_out)
{
uint8_t cdb[16]; // SCSI Command Descriptor Block
uint8_t sense[18];
uint32_t expected_tag;
int size;
int rc;
// Request Sense
printf("Request Sense:\n");
memset(sense, 0, sizeof(sense));
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x03; // Request Sense
cdb[4] = REQUEST_SENSE_LENGTH;
send_mass_storage_command(handle, endpoint_out, 0, cdb, LIBUSB_ENDPOINT_IN, REQUEST_SENSE_LENGTH, &expected_tag);
rc = libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&sense, REQUEST_SENSE_LENGTH, &size, 1000);
if (rc < 0)
{
printf("libusb_bulk_transfer failed: %s\n", libusb_error_name(rc));
return;
}
printf(" received %d bytes\n", size);
if ((sense[0] != 0x70) && (sense[0] != 0x71)) {
perr(" ERROR No sense data\n");
} else {
perr(" ERROR Sense: %02X %02X %02X\n", sense[2]&0x0F, sense[12], sense[13]);
}
// Strictly speaking, the get_mass_storage_status() call should come
// before these perr() lines. If the status is nonzero then we must
// assume there's no data in the buffer. For xusb it doesn't matter.
get_mass_storage_status(handle, endpoint_in, expected_tag);
}
// Mass Storage device to test bulk transfers (non destructive test)
static int test_mass_storage(libusb_device_handle *handle, uint8_t endpoint_in, uint8_t endpoint_out)
{
int r, size;
uint8_t lun;
uint32_t expected_tag;
uint32_t i, max_lba, block_size;
double device_size;
uint8_t cdb[16]; // SCSI Command Descriptor Block
uint8_t buffer[64];
unsigned char vid[9], pid[9], rev[5];
unsigned char *data;
FILE *fd;
printf("\nReading Max LUN:\n");
r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
BOMS_GET_MAX_LUN, 0, 0, &lun, 1, 1000);
// Some devices send a STALL instead of the actual value.
// In such cases we should set lun to 0.
if (r == LIBUSB_ERROR_PIPE) {
lun = 0;
printf(" Stalled, setting Max LUN to 0\n");
} else if (r < 0) {
perr(" Failed.\n");
return r;
} else {
printf(" Max LUN = %d\n", lun);
}
// Send Inquiry
printf("\nSending Inquiry:\n");
memset(buffer, 0, sizeof(buffer));
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x12; // Inquiry
cdb[4] = INQUIRY_LENGTH;
send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, INQUIRY_LENGTH, &expected_tag);
CALL_CHECK(libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&buffer, INQUIRY_LENGTH, &size, 1000));
printf(" received %d bytes\n", size);
// The following strings are not zero terminated
for (i=0; i<8; i++) {
vid[i] = buffer[8+i];
pid[i] = buffer[16+i];
rev[i/2] = buffer[32+i/2]; // instead of another loop
}
vid[8] = 0;
pid[8] = 0;
rev[4] = 0;
printf(" VID:PID:REV \"%8s\":\"%8s\":\"%4s\"\n", vid, pid, rev);
if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
get_sense(handle, endpoint_in, endpoint_out);
}
// Read capacity
printf("\nReading Capacity:\n");
memset(buffer, 0, sizeof(buffer));
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x25; // Read Capacity
send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, READ_CAPACITY_LENGTH, &expected_tag);
CALL_CHECK(libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&buffer, READ_CAPACITY_LENGTH, &size, 1000));
printf(" received %d bytes\n", size);
max_lba = be_to_int32(&buffer[0]);
block_size = be_to_int32(&buffer[4]);
device_size = ((double)(max_lba+1))*block_size/(1024*1024*1024);
printf(" Max LBA: %08X, Block Size: %08X (%.2f GB)\n", max_lba, block_size, device_size);
if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
get_sense(handle, endpoint_in, endpoint_out);
}
// coverity[tainted_data]
data = (unsigned char*) calloc(1, block_size);
if (data == NULL) {
perr(" unable to allocate data buffer\n");
return -1;
}
// Send Read
printf("\nAttempting to read %u bytes:\n", block_size);
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x28; // Read(10)
cdb[8] = 0x01; // 1 block
send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, block_size, &expected_tag);
libusb_bulk_transfer(handle, endpoint_in, data, block_size, &size, 5000);
printf(" READ: received %d bytes\n", size);
if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
get_sense(handle, endpoint_in, endpoint_out);
} else {
display_buffer_hex(data, size);
if (binary_dump) {
fd = fopen(binary_name, "w");
if (fd != NULL) {
if (fwrite(data, 1, (size_t)size, fd) != (unsigned int)size) {
perr(" unable to write binary data\n");
}
fclose(fd);
}
}
}
free(data);
return 0;
}
// HID
static int get_hid_record_size(const uint8_t *hid_report_descriptor, int size, int type)
{
uint8_t j = 0;
uint8_t offset;
int record_size[3] = {0, 0, 0};
unsigned int nb_bits = 0, nb_items = 0;
bool found_record_marker;
found_record_marker = false;
for (int i = hid_report_descriptor[0]+1; i < size; i += offset) {
offset = (hid_report_descriptor[i]&0x03) + 1;
if (offset == 4)
offset = 5;
switch (hid_report_descriptor[i] & 0xFC) {
case 0x74: // bitsize
nb_bits = hid_report_descriptor[i+1];
break;
case 0x94: // count
nb_items = 0;
for (j=1; j<offset; j++) {
nb_items = ((unsigned int)hid_report_descriptor[i+j]) << (8U*(j-1U));
}
break;
case 0x80: // input
found_record_marker = true;
j = 0;
break;
case 0x90: // output
found_record_marker = true;
j = 1;
break;
case 0xb0: // feature
found_record_marker = true;
j = 2;
break;
case 0xC0: // end of collection
nb_items = 0;
nb_bits = 0;
break;
default:
continue;
}
if (found_record_marker) {
found_record_marker = false;
record_size[j] += nb_items*nb_bits;
}
}
if ((type < HID_REPORT_TYPE_INPUT) || (type > HID_REPORT_TYPE_FEATURE)) {
return 0;
} else {
return (record_size[type - HID_REPORT_TYPE_INPUT]+7)/8;
}
}
static int test_hid(libusb_device_handle *handle, uint8_t endpoint_in)
{
int r, size, descriptor_size;
uint8_t hid_report_descriptor[256];
uint8_t *report_buffer;
FILE *fd;
printf("\nReading HID Report Descriptors:\n");
descriptor_size = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_STANDARD|LIBUSB_RECIPIENT_INTERFACE,
LIBUSB_REQUEST_GET_DESCRIPTOR, LIBUSB_DT_REPORT<<8, 0, hid_report_descriptor, sizeof(hid_report_descriptor), 1000);
if (descriptor_size < 0) {
printf(" Failed\n");
return -1;
}
display_buffer_hex(hid_report_descriptor, (unsigned int)descriptor_size);
if (binary_dump) {
fd = fopen(binary_name, "w");
if (fd != NULL) {
if (fwrite(hid_report_descriptor, 1, (size_t)descriptor_size, fd) != (size_t)descriptor_size) {
printf(" Error writing descriptor to file\n");
}
fclose(fd);
}
}
size = get_hid_record_size(hid_report_descriptor, descriptor_size, HID_REPORT_TYPE_FEATURE);
if (size <= 0) {
printf("\nSkipping Feature Report readout (None detected)\n");
} else if (size > UINT16_MAX) {
printf("\nSkipping Feature Report readout (bigger than UINT16_MAX)\n");
} else {
report_buffer = (uint8_t*) calloc(1, (size_t)size);
if (report_buffer == NULL) {
return -1;
}
printf("\nReading Feature Report (length %d)...\n", size);
r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_FEATURE<<8)|0, 0, report_buffer, (uint16_t)size, 5000);
if (r >= 0) {
display_buffer_hex(report_buffer, (unsigned int)size);
} else {
switch(r) {
case LIBUSB_ERROR_NOT_FOUND:
printf(" No Feature Report available for this device\n");
break;
case LIBUSB_ERROR_PIPE:
printf(" Detected stall - resetting pipe...\n");
libusb_clear_halt(handle, 0);
break;
default:
printf(" Error: %s\n", libusb_strerror((enum libusb_error)r));
break;
}
}
free(report_buffer);
}
size = get_hid_record_size(hid_report_descriptor, descriptor_size, HID_REPORT_TYPE_INPUT);
if (size <= 0) {
printf("\nSkipping Input Report readout (None detected)\n");
} else if (size > UINT16_MAX) {
printf("\nSkipping Input Report readout (bigger than UINT16_MAX)\n");
} else {
report_buffer = (uint8_t*) calloc(1, (size_t)size);
if (report_buffer == NULL) {
return -1;
}
printf("\nReading Input Report (length %d)...\n", size);
r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x00, 0, report_buffer, (uint16_t)size, 5000);
if (r >= 0) {
display_buffer_hex(report_buffer, (unsigned int)size);
} else {
switch(r) {
case LIBUSB_ERROR_TIMEOUT:
printf(" Timeout! Please make sure you act on the device within the 5 seconds allocated...\n");
break;
case LIBUSB_ERROR_PIPE:
printf(" Detected stall - resetting pipe...\n");
libusb_clear_halt(handle, 0);
break;
default:
printf(" Error: %s\n", libusb_strerror((enum libusb_error)r));
break;
}
}
// Attempt a bulk read from endpoint 0 (this should just return a raw input report)
printf("\nTesting interrupt read using endpoint %02X...\n", endpoint_in);
r = libusb_interrupt_transfer(handle, endpoint_in, report_buffer, size, &size, 5000);
if (r >= 0) {
display_buffer_hex(report_buffer, (unsigned int)size);
} else {
printf(" %s\n", libusb_strerror((enum libusb_error)r));
}
free(report_buffer);
}
return 0;
}
// Read the MS WinUSB Feature Descriptors, that are used on Windows 8 for automated driver installation
static void read_ms_winsub_feature_descriptors(libusb_device_handle *handle, uint8_t bRequest, int iface_number)
{
#define MAX_OS_FD_LENGTH 256
int i, r;
uint8_t os_desc[MAX_OS_FD_LENGTH];
uint32_t length;
void* le_type_punning_IS_fine;
struct {
const char* desc;
uint8_t recipient;
uint16_t index;
uint16_t header_size;
} os_fd[2] = {
{"Extended Compat ID", LIBUSB_RECIPIENT_DEVICE, 0x0004, 0x10},
{"Extended Properties", LIBUSB_RECIPIENT_INTERFACE, 0x0005, 0x0A}
};
if (iface_number < 0) return;
// WinUSB has a limitation that forces wIndex to the interface number when issuing
// an Interface Request. To work around that, we can force a Device Request for
// the Extended Properties, assuming the device answers both equally.
if (force_device_request)
os_fd[1].recipient = LIBUSB_RECIPIENT_DEVICE;
for (i=0; i<2; i++) {
printf("\nReading %s OS Feature Descriptor (wIndex = 0x%04d):\n", os_fd[i].desc, os_fd[i].index);
// Read the header part
r = libusb_control_transfer(handle, (uint8_t)(LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_VENDOR|os_fd[i].recipient),
bRequest, (uint16_t)(((iface_number)<< 8)|0x00), os_fd[i].index, os_desc, os_fd[i].header_size, 1000);
if (r < os_fd[i].header_size) {
perr(" Failed: %s", (r<0)?libusb_strerror((enum libusb_error)r):"header size is too small");
return;
}
le_type_punning_IS_fine = (void*)os_desc;
length = *((uint32_t*)le_type_punning_IS_fine);
if (length > MAX_OS_FD_LENGTH) {
length = MAX_OS_FD_LENGTH;
}
// Read the full feature descriptor
r = libusb_control_transfer(handle, (uint8_t)(LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_VENDOR|os_fd[i].recipient),
bRequest, (uint16_t)(((iface_number)<< 8)|0x00), os_fd[i].index, os_desc, (uint16_t)length, 1000);
if (r < 0) {
perr(" Failed: %s", libusb_strerror((enum libusb_error)r));
return;
} else {
display_buffer_hex(os_desc, (unsigned int)r);
}
}
}
static void print_sublink_speed_attribute(struct libusb_ssplus_sublink_attribute* ss_attr) {
static const char exponent[] = " KMG";
printf(" id=%u speed=%u%cbs %s %s SuperSpeed%s",
ss_attr->ssid,
ss_attr->mantissa,
(exponent[ss_attr->exponent]),
(ss_attr->type == LIBUSB_SSPLUS_ATTR_TYPE_ASYM)? "Asym" : "Sym",
(ss_attr->direction == LIBUSB_SSPLUS_ATTR_DIR_TX)? "TX" : "RX",
(ss_attr->protocol == LIBUSB_SSPLUS_ATTR_PROT_SSPLUS)? "Plus": "" );
}
static void print_device_cap(struct libusb_bos_dev_capability_descriptor *dev_cap)
{
switch(dev_cap->bDevCapabilityType) {
case LIBUSB_BT_USB_2_0_EXTENSION: {
struct libusb_usb_2_0_extension_descriptor *usb_2_0_ext = NULL;
libusb_get_usb_2_0_extension_descriptor(NULL, dev_cap, &usb_2_0_ext);
if (usb_2_0_ext) {
printf(" USB 2.0 extension:\n");
printf(" attributes : %02X\n", usb_2_0_ext->bmAttributes);
libusb_free_usb_2_0_extension_descriptor(usb_2_0_ext);
}
break;
}
case LIBUSB_BT_SS_USB_DEVICE_CAPABILITY: {
struct libusb_ss_usb_device_capability_descriptor *ss_usb_device_cap = NULL;
libusb_get_ss_usb_device_capability_descriptor(NULL, dev_cap, &ss_usb_device_cap);
if (ss_usb_device_cap) {
printf(" USB 3.0 capabilities:\n");
printf(" attributes : %02X\n", ss_usb_device_cap->bmAttributes);
printf(" supported speeds : %04X\n", ss_usb_device_cap->wSpeedSupported);
printf(" supported functionality: %02X\n", ss_usb_device_cap->bFunctionalitySupport);
libusb_free_ss_usb_device_capability_descriptor(ss_usb_device_cap);
}
break;
}
case LIBUSB_BT_CONTAINER_ID: {
struct libusb_container_id_descriptor *container_id = NULL;
libusb_get_container_id_descriptor(NULL, dev_cap, &container_id);
if (container_id) {
printf(" Container ID:\n %s\n", uuid_to_string(container_id->ContainerID));
libusb_free_container_id_descriptor(container_id);
}
break;
}
case LIBUSB_BT_PLATFORM_DESCRIPTOR: {
struct libusb_platform_descriptor *platform_descriptor = NULL;
libusb_get_platform_descriptor(NULL, dev_cap, &platform_descriptor);
if (platform_descriptor) {
printf(" Platform descriptor:\n");
printf(" bLength : %d\n", platform_descriptor->bLength);
printf(" PlatformCapabilityUUID : %s\n", uuid_to_string(platform_descriptor->PlatformCapabilityUUID));
display_buffer_hex(&platform_descriptor->CapabilityData[0], platform_descriptor->bLength - 20);
printf("\n");
libusb_free_platform_descriptor(platform_descriptor);
}
break;
}
case LIBUSB_BT_SUPERSPEED_PLUS_CAPABILITY: {
struct libusb_ssplus_usb_device_capability_descriptor *ssplus_usb_device_cap = NULL;
libusb_get_ssplus_usb_device_capability_descriptor(NULL, dev_cap, &ssplus_usb_device_cap);
if (ssplus_usb_device_cap) {
printf(" USB 3.1 capabilities:\n");
printf(" num speed IDs: %d\n", ssplus_usb_device_cap->numSublinkSpeedIDs);
printf(" minLaneSpeed: %d\n", ssplus_usb_device_cap->ssid);
printf(" minRXLanes: %d\n", ssplus_usb_device_cap->minRxLaneCount);
printf(" minTXLanes: %d\n", ssplus_usb_device_cap->minTxLaneCount);
printf(" num speed attribute IDs: %d\n", ssplus_usb_device_cap->numSublinkSpeedAttributes);
for(uint8_t i=0 ; i < ssplus_usb_device_cap->numSublinkSpeedAttributes ; i++) {
print_sublink_speed_attribute(&ssplus_usb_device_cap->sublinkSpeedAttributes[i]);
printf("\n");
}
libusb_free_ssplus_usb_device_capability_descriptor(ssplus_usb_device_cap);
}
break;
}
default:
printf(" Unknown BOS device capability %02x:\n", dev_cap->bDevCapabilityType);
}
}
static int test_device(uint16_t vid, uint16_t pid)
{
libusb_device_handle *handle;
libusb_device *dev;
uint8_t bus, port_path[8];
struct libusb_config_descriptor *conf_desc;
const struct libusb_endpoint_descriptor *endpoint;
int i, j, k, r;
int iface, nb_ifaces, first_iface = -1;
struct libusb_device_descriptor dev_desc;
const char* const speed_name[] = { "Unknown", "1.5 Mbit/s (USB LowSpeed)", "12 Mbit/s (USB FullSpeed)",
"480 Mbit/s (USB HighSpeed)", "5000 Mbit/s (USB SuperSpeed)", "10000 Mbit/s (USB SuperSpeedPlus)",
"20000 Mbit/s (USB SuperSpeedPlus x2)" };
unsigned char string[128];
uint8_t string_index[3]; // indexes of the string descriptors
uint8_t endpoint_in = 0, endpoint_out = 0; // default IN and OUT endpoints
printf("Opening device %04X:%04X...\n", vid, pid);
handle = libusb_open_device_with_vid_pid(NULL, vid, pid);
if (handle == NULL) {
perr(" Failed.\n");
return -1;
}
dev = libusb_get_device(handle);
bus = libusb_get_bus_number(dev);
if (extra_info) {
r = libusb_get_port_numbers(dev, port_path, sizeof(port_path));
if (r > 0) {
printf("\nDevice properties:\n");
printf(" bus number: %d\n", bus);
printf(" port path: %d", port_path[0]);
for (i=1; i<r; i++) {
printf("->%d", port_path[i]);
}
printf(" (from root hub)\n");
}
r = libusb_get_device_speed(dev);
if ((r < 0) || ((size_t)r >= ARRAYSIZE(speed_name)))
r = 0;
printf(" speed: %s\n", speed_name[r]);
}
printf("\nReading device descriptor:\n");
CALL_CHECK_CLOSE(libusb_get_device_descriptor(dev, &dev_desc), handle);
printf(" length: %d\n", dev_desc.bLength);
printf(" device class: %d\n", dev_desc.bDeviceClass);
printf(" S/N: %d\n", dev_desc.iSerialNumber);
printf(" VID:PID: %04X:%04X\n", dev_desc.idVendor, dev_desc.idProduct);
printf(" bcdDevice: %04X\n", dev_desc.bcdDevice);
printf(" iMan:iProd:iSer: %d:%d:%d\n", dev_desc.iManufacturer, dev_desc.iProduct, dev_desc.iSerialNumber);
printf(" nb confs: %d\n", dev_desc.bNumConfigurations);
// Copy the string descriptors for easier parsing
string_index[0] = dev_desc.iManufacturer;
string_index[1] = dev_desc.iProduct;
string_index[2] = dev_desc.iSerialNumber;
if (dev_desc.bcdUSB >= 0x0201) {
struct libusb_bos_descriptor *bos_desc;
printf("\nReading BOS descriptor: ");
if (libusb_get_bos_descriptor(handle, &bos_desc) == LIBUSB_SUCCESS) {
printf("%d caps\n", bos_desc->bNumDeviceCaps);
for (i = 0; i < bos_desc->bNumDeviceCaps; i++)
print_device_cap(bos_desc->dev_capability[i]);
libusb_free_bos_descriptor(bos_desc);
} else {
printf("no descriptor\n");
}
}
printf("\nReading first configuration descriptor:\n");
CALL_CHECK_CLOSE(libusb_get_config_descriptor(dev, 0, &conf_desc), handle);
printf(" total length: %d\n", conf_desc->wTotalLength);
printf(" descriptor length: %d\n", conf_desc->bLength);
nb_ifaces = conf_desc->bNumInterfaces;
printf(" nb interfaces: %d\n", nb_ifaces);
if (nb_ifaces > 0)
first_iface = conf_desc->usb_interface[0].altsetting[0].bInterfaceNumber;
for (i=0; i<nb_ifaces; i++) {
printf(" interface[%d]: id = %d\n", i,
conf_desc->usb_interface[i].altsetting[0].bInterfaceNumber);
for (j=0; j<conf_desc->usb_interface[i].num_altsetting; j++) {
printf("interface[%d].altsetting[%d]: num endpoints = %d\n",
i, j, conf_desc->usb_interface[i].altsetting[j].bNumEndpoints);
printf(" Class.SubClass.Protocol: %02X.%02X.%02X\n",
conf_desc->usb_interface[i].altsetting[j].bInterfaceClass,
conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass,
conf_desc->usb_interface[i].altsetting[j].bInterfaceProtocol);
if ( (conf_desc->usb_interface[i].altsetting[j].bInterfaceClass == LIBUSB_CLASS_MASS_STORAGE)
&& ( (conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass == 0x01)
|| (conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass == 0x06) )
&& (conf_desc->usb_interface[i].altsetting[j].bInterfaceProtocol == 0x50) ) {
// Mass storage devices that can use basic SCSI commands
test_mode = USE_SCSI;
}
for (k=0; k<conf_desc->usb_interface[i].altsetting[j].bNumEndpoints; k++) {
struct libusb_ss_endpoint_companion_descriptor *ep_comp = NULL;
endpoint = &conf_desc->usb_interface[i].altsetting[j].endpoint[k];
printf(" endpoint[%d].address: %02X\n", k, endpoint->bEndpointAddress);
// Use the first interrupt or bulk IN/OUT endpoints as default for testing
if ((endpoint->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) & (LIBUSB_TRANSFER_TYPE_BULK | LIBUSB_TRANSFER_TYPE_INTERRUPT)) {
if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) {
if (!endpoint_in)
endpoint_in = endpoint->bEndpointAddress;
} else {
if (!endpoint_out)
endpoint_out = endpoint->bEndpointAddress;
}
}
printf(" max packet size: %04X\n", endpoint->wMaxPacketSize);
printf(" polling interval: %02X\n", endpoint->bInterval);
libusb_get_ss_endpoint_companion_descriptor(NULL, endpoint, &ep_comp);
if (ep_comp) {
printf(" max burst: %02X (USB 3.0)\n", ep_comp->bMaxBurst);
printf(" bytes per interval: %04X (USB 3.0)\n", ep_comp->wBytesPerInterval);
libusb_free_ss_endpoint_companion_descriptor(ep_comp);
}
}
}
}
libusb_free_config_descriptor(conf_desc);
libusb_set_auto_detach_kernel_driver(handle, 1);
for (iface = 0; iface < nb_ifaces; iface++)
{
int ret;
printf("\nKernel driver attached for interface %d: ", iface);
ret = libusb_kernel_driver_active(handle, iface);
if (ret == 0)
printf("none\n");
else if (ret == 1)
printf("yes\n");
else if (ret == LIBUSB_ERROR_NOT_SUPPORTED)
printf("(not supported)\n");
else
perr("\n Failed (error %d) %s\n", ret,
libusb_strerror((enum libusb_error) ret));
printf("\nClaiming interface %d...\n", iface);
r = libusb_claim_interface(handle, iface);