Skip to content

Latest commit

 

History

History
504 lines (325 loc) · 14 KB

CHANGELOG.md

File metadata and controls

504 lines (325 loc) · 14 KB

v1.13.3 (2024-08-13)

Fix

  • added f1 score to list of output statistics

v1.13.2 (2024-08-09)

Fix

  • changed results output SD on the same row as param
  • update model patience config option

v1.13.1 (2024-07-11)

Fix

  • added optimal acceptance time recording to results

Refactor

  • refactored run.py

v1.13.0 (2024-06-19)

Feat

  • add ones init type to Weight

Fix

  • remove watermark dependencies
  • make watermark package optional
  • changed precision to 4
  • fix incorrect text display for model.config
  • added assert checks for incorrect choice set numbering in dataset

Refactor

  • fix argument name inconsistency

v1.12.0 (2024-03-06)

Feat

  • functions.py: added gelu function

Fix

  • basic.py: fix bug in null_log_likelihood_fn for givens
  • dataset.py: fixed slice call when no batch_size argument is used
  • dataset.py: fixed the split method to accept None as argument

Refactor

  • functions.py: refactored method to covert list of utilities to tensor variables
  • dataset.py: accept mixed str and TensorVariable types in _make_tensor
  • basic.py: moved build_gh_fn() to BaseModel

v1.11.1 (2024-02-29)

v1.11.0 (2024-02-29)

Feat

  • run: added is_training flag

Fix

  • pyproject.toml: fix incorrect bump message
  • added null_log_likelihood_fn to basic.py
  • results: add argument for max cutoff in show_training_plot
  • results.py: fixed legend placement on training plot
  • run.py: add option for acceptance_method argument

Refactor

  • minor refactorization

v1.10.0 (2024-02-15)

Feat

  • layers.py: added new layer type LayerNorm
  • expression.py: added new parameter type Gamma
  • results.py: add argument offset to show_training_plot
  • run: moved train and compute to pycmtensor.run for cleaniness

Fix

  • TasteNet.py: changed instance check type from .DenseLayer to .Layer
  • run.py: add limit for verbosity

v1.9.2 (2024-02-08)

Fix

  • dataset: added split via n-count and added option for pre-shuffle
  • dataset: updated scale_variable method to handle both single variables and lists of variables

v1.9.1 (2023-12-20)

Fix

  • workflow: remove poetry from tests
  • add missing poetry dependencies

v1.9.0 (2023-12-20)

Feat

  • overhaul dependencies for conda feedstock

v1.8.1 (2023-11-28)

Fix

  • basic: add lr_scheduler to compute() function

Refactor

  • clean up and enhance code with codiumAI

v1.8.0 (2023-11-24)

Feat

  • utils: add new function to display numbers as human readable format
  • results: add new function to plot training statistics

Fix

  • scheduler: fix missing arguments
  • basic: renamed variable to avoid confusion

v1.7.1 (2023-09-28)

Fix

  • scheduler: fixed calculation erro in cyclic lr
  • condition for stdout

v1.7.0 (2023-09-22)

Feat

  • new option for selection of model acceptance pattern
  • calculating distributed Beta now uses percentile instead of mean
  • models: add new func compute to run the model on a manual set of params
  • regularizers: new method include_regularization_terms() in BaseModel for adding regularizers

Fix

  • dependencies: prevent breakage of numpy 1.26
  • import compute from pycmtensor.models
  • fix l2 regularizer formula
  • set init_types as a module level list and add tests
  • add minmax clipping on neural net layer outputs
  • temporary function for negative relu
  • expression fix for random draw variables

Refactor

  • relax the condition for stdout during training
  • config: refactor config.add into .add() and .update() methods

v1.6.4 (2023-08-14)

Refactor

  • changed basic model functions into staticmethod
  • expressions.py: make ExpressionParser.parse a staticmethod
  • remove depreciated modules

v1.6.3 (2023-08-11)

Fix

  • expressions.py: use predefined draw types for random draws
  • basic.py: include choice label(s) as a dictionary for predict()
  • moved elasticities from statistics to model

v1.6.1 (2023-08-10)

Fix

  • scheduler.py: add learning rate lower bounds for decaying functions
  • basic.py: add placeholder arguments *args

Refactor

  • basic.py: improve efficency of hessian matrix calculation over the sum of log likelihood over observation
  • basic.py: refactoring common model functions into BaseModel
  • syntax and naming changes

v1.5.0 (2023-07-26)

Feat

  • optimizers.py: include new optimizer RProp
  • functions.py: speed up computation and compilation by using static indexing in log_likelihood function
  • functions.py: add relu() function (source taken from Theano 0.7.1)
  • basic.py: new function include_params_for_convergence
  • dataset.py: use as_tensor_variable to construct tensor vector from dataset[[item1, item2,...]]
  • dataset.py: added list(str) as tensor arguments for train_dataset() and valid_dataset()

Fix

  • init.py: fix init circular imports
  • statistics.py: update t_test and varcovar matrix calculations for vector parameters
  • layers.py: various fixes to neural net layers
  • optimizers.py: fix SQNBFGS algorithm
  • functions.py: include output as params for 1st and 2nd order derivatives
  • expressions.py: fix base class inheritence and use config.seed for seed value
  • expressions.py: include self in overloaded operators if other instance is of similar type as self
  • basic.py: fix incorrect saved params in train()
  • expressions.py: clip lower and upper bounds when updating Betas
  • expressions.py: fixed Weights and Bias mathematical operations
  • config.py: renamed config.py to defaultconfig.py to avoid name conflicts

Refactor

  • results.py: updates results calculations for beta vectors
  • expressions.py: add set_value in Param base class
  • optimizers.py: removed unused imports

v1.4.0 (2023-07-16)

Feat

  • optimizers.py: added new BFGS algorithm
  • dataset.py: moved dataset initialization to dataset.py
  • pycmtensor.py: Implemented early stopping on coefficient convergence in training loop
  • functions.py: logit method now takes uneven dimensioned-utilities
  • expression.py: Added RandomDraws expression for sampling in mixed logit
  • get_train_data optional argument numpy_out to return numpy arrays rather than pandas arrays
  • BHHH algorithm for calculating var-covar matrix applies to each data row

Fix

  • results.py: fixed instance when params are not Betas
  • expressions.py: include RandomDraws as an option in expression evaluations
  • Update tests workflow file conda packages
  • pycmtensor.py: Added missing configuration for stepLR drop_every
  • tests.yml: Update tests workflow file conda packages
  • optimizers.py: Fixed name typo in __all__
  • results.py: Corrected calculation of hessian and bhhh matrices
  • scheduler.py: Moved class function calls to parent class
  • statistics.py: Fixed rob varcovar calculation error
  • MNL.py: Moved aesara function to parent class
  • data.py: Streamlined class function calls and removed unnecessary code
  • removed package import clashes with config.py
  • removed gnorm calculation
  • update hessian matrix and bhhh algorithm functions

Refactor

  • pycmtensor.py: temporarily removed pycmtensor.py
  • MNL.py: replaced function constructors from pycmtensor.py as a function call inside the model Class object
  • basic.py: moved model functionality to from pycmtensor.py to models/basic.py
  • utils.py: Removed unused code

v1.3.2 (2023-06-23)

Fix

  • make arguments in MNL as optional keyword arguments
  • moved learning rate variable to PyCMTensorModel class

Refactor

  • make model variables as property
  • update __all__ package variables
  • added train_data and valid_data property to Data class

v1.3.1 (2022-11-17)

Fix

  • fix utility dimensions for asc only cases

v1.3.0 (2022-11-10)

Feat

  • optimizers: added Nadam optimizer
  • layers.py: added DenseLayer BatchNormLayer ResidualLayer
  • added pycmtensor.about() to output package metadata
  • added EMA function functions.exp_mov_average()

Fix

  • renamed depreceated instances of aesara modules
  • data.py: defaults batch_size argument to 0 if batch_size is None
  • updated syntax for expressions.py class objects
  • added init_type property to Weights class
  • moved model aesara compile functions from models.MNL to pycmtensor.PyCMTensorModel
  • added argument type hints in function.py

Refactor

  • data: added import dataset cleaning step as arguments in Data()
  • moved ResidualLayer to pycmtensor.models.layers
  • updated timing to perf_counter
  • pycmtensor: refactoring model_loglikelihood

v1.2.1 (2022-10-25)

Feat

  • added pycmtensor.about() to output package metadata
  • added EMA function functions.exp_mov_average()

Fix

  • updated syntax for expressions.py class objects
  • added init_type property to Weights class
  • moved model aesara compile functions from models.MNL to pycmtensor.PyCMTensorModel

v1.2.0 (2022-10-14)

Feat

  • expressions: added Weights class object (#59)
  • functions: added rmse and mae objective functions (#58)
  • batch shuffle for training
  • function: added KL divergence loss function (#50)

Fix

  • added expand_dims into logit function
  • replace class function Beta.Beta with Beta.beta
  • removed flatten() from logit function

v1.1.0 (2022-09-23)

Feat

  • scheduler: added learning rate scheduling to train()
  • code: overhaul and cleanup

Fix

  • environment: update project deps and pre-commit routine
  • config: remove unnecessary cxx flags from macos builds

Perf

  • config: misc optimization changes

v1.0.6 (2022-08-12)

Fix

  • config: added optimizing speedups to config
  • config: set default cyclic_lr_mode and cyclic_lr_step_size to None
  • pre-commit-config: update black to 22.6.0 in pre-commit check

Refactor

  • models: refactored build_functions() into models.py
  • database: refactor set_choice(choiceVar)

v1.0.5 (2022-07-27)

Fix

  • tests: removed depreciated tests
  • routine: remove depreciated tqdm module

v1.0.4 (2022-07-27)

Fix

  • pycmtensor.py: update training method
  • config.py: new config option verbosity: "high", "low"
  • pycmtensor.py: remove warnings for max_iter<patience

v1.0.3 (2022-05-12)

v1.0.1 (2022-05-12)

Fix

  • scheduler: fix missing args in input parameters
  • scheduler: fix constantLR missing input paramerer

v1.0.0 (2022-05-10)

Feat

  • python: update to python 3.10

Fix

  • tests: update tests files to reflect changes in biogeme removal

v0.8.0 (2022-05-10)

Feat

  • deps: remove Biogeme dependencies

v0.7.1 (2022-05-10)

Fix

  • expressions: remove Biogeme dependencies
  • database: remove dependencies of Biogeme
  • debug: remove debug handler after each run to prevent duplication
  • models: add function to return layer output -> get_layer_outputs()
  • debug: disables tqdm if debug mode is on and activates debug_log

Refactor

  • move elasticites from models to statistics for consistency

v0.7.0 (2022-03-17)

Feat

  • models: add functionality to compute elasticities of choice vs attribute in models.py

Fix

  • results: remove unnessary show_weights option in Results
  • set default max_epoch on training run to adaptive rule
  • print valid config options when invalid options are given as args to train()
  • scheduler: modified cyclic_lr config loading sequence to fix unboundError
  • train: turn saving model off for now
  • config: generate os dependent ld_flags

Refactor

  • utils: refactored save_to_pickle and disables it

Perf

  • IterationTracker: use numpy array to store iteration data

v0.6.5 (2022-03-14)

Feat

  • models: Implement the ResLogit layer

Fix

  • config: set default learning schedule to ConstantLR
  • config: set default seed to a random number on init

v0.6.4 (2022-03-13)

Feat

  • scheduler.py: add new scheduler (CyclicLR) for adaptive LR

Fix

  • project: fix project metadata and ci
  • config: loadout config from train() to configparser
  • utils: fix TypeError check

v0.5.0 (2022-03-02)

Feat

  • config: add PyCMTensorConfig class to store config settings
  • expressions: add magic methods lt le gt le ne eq
  • config.py: enable pre-writing of .aesararc config file on module load
  • models: add method prob() to MNLogit to output prob slices
  • time_format: enable logging of build and estimation time
  • results: add Predict class to output probs or discrete choices
  • optimizers: add AdaGram algorithm
  • Database: add getattr build-in type to Database
  • pycmtensor.py: add model.output_choices to generate choices

Fix

  • statistics: add small value to stderror calculation to address sqrt(0)
  • dependencies: move ipywidgets and pydot to dependencies
  • renamed .rst to .md fix FileNotFoundError
  • result: print more verbose results and options
  • Database: add name to shared_data
  • train: model instance now load initiated model class (not input Class as argument)
  • Database: set choiceVar to mandatory argument
  • PyCMTensor: rename append_to_params to add_params for consistency
  • PyCMTensor: new method to add regularizers to cost function
  • Expressions: invokes different operator for Beta Beta maths
  • show excluded data in model est. output
  • results: standardized naming conventions in modules db->database
  • tqdm: add arg in train() to enable notebook progressbar
  • swissmetro_test.ipynb: update swissmetro example

Refactor

  • PyCMTensor: refactoring models from pycmtensor.py
  • Database: refactor(Database): refactoring database.py from pycmtensor.py
  • optimizers: refactor base Optimizer class
  • moved Beta Weights to expressions.py

Perf

  • shared_data: improve iteration speed by implementing shared() on input data