From 09d6293f32f38a48de820b6bf47b85736bf8c81c Mon Sep 17 00:00:00 2001 From: Akash A Desai <62583018+akashAD98@users.noreply.github.com> Date: Mon, 12 Sep 2022 19:52:26 +0530 Subject: [PATCH] updated Reparameterization weight path & added steps for doing Reparameterization ,also fixed few typos (#552) * Update reparameterization.ipynb * Update reparameterization.ipynb * Update reparameterization.ipynb * Update reparameterization.ipynb * Update reparameterization.ipynb * Add files via upload * Update userdata.sh fix typo of yolov7 --- tools/reparameterization.ipynb | 38 +++++++++++++++++++++++++++------- utils/aws/userdata.sh | 4 ++-- 2 files changed, 33 insertions(+), 9 deletions(-) diff --git a/tools/reparameterization.ipynb b/tools/reparameterization.ipynb index d529884b80..796b87c82d 100644 --- a/tools/reparameterization.ipynb +++ b/tools/reparameterization.ipynb @@ -8,6 +8,30 @@ "# Reparameterization" ] }, + { + "cell_type": "markdown", + "id": "9725e211", + "metadata": {}, + "source": [ + "\n", + "### What is Reparameterization ?\n", + "Reparameterization is used to reduce trainable BoF modules into deploy model for fast inference. For example merge BN to conv, merge YOLOR to conv, ..etc\n", + "However, before reparameterization, the model has more parameters and computation cost.reparameterized model (cfg/deploy) used for deployment purpose\n", + "\n", + "\n", + "\n", + "### Steps required for model conversion.\n", + "1.train custom model & you will get your own weight i.e custom_weight.pt / use (pretrained weight which is available i.e yolov7_traing.pt)\n", + "\n", + "2.Converting this weight using Reparameterization method.\n", + "\n", + "3.Trained model (cfg/training) and reparameterized model (cfg/deploy) will get same prediction results.\n", + "However, before reparameterization, the model has more parameters and computation cost.\n", + "\n", + "4.Convert reparameterized weight into onnx & tensorrt\n", + "For faster inference & deployment purpose." + ] + }, { "cell_type": "markdown", "id": "13393b70", @@ -32,7 +56,7 @@ "\n", "device = select_device('0', batch_size=1)\n", "# model trained by cfg/training/*.yaml\n", - "ckpt = torch.load('cfg/training/yolov7.pt', map_location=device)\n", + "ckpt = torch.load('cfg/training/yolov7_training.pt', map_location=device)\n", "# reparameterized model in cfg/deploy/*.yaml\n", "model = Model('cfg/deploy/yolov7.yaml', ch=3, nc=80).to(device)\n", "\n", @@ -94,7 +118,7 @@ "\n", "device = select_device('0', batch_size=1)\n", "# model trained by cfg/training/*.yaml\n", - "ckpt = torch.load('cfg/training/yolov7x.pt', map_location=device)\n", + "ckpt = torch.load('cfg/training/yolov7x_trainig.pt', map_location=device)\n", "# reparameterized model in cfg/deploy/*.yaml\n", "model = Model('cfg/deploy/yolov7x.yaml', ch=3, nc=80).to(device)\n", "\n", @@ -156,7 +180,7 @@ "\n", "device = select_device('0', batch_size=1)\n", "# model trained by cfg/training/*.yaml\n", - "ckpt = torch.load('cfg/training/yolov7-w6.pt', map_location=device)\n", + "ckpt = torch.load('cfg/training/yolov7-w6_trainig.pt', map_location=device)\n", "# reparameterized model in cfg/deploy/*.yaml\n", "model = Model('cfg/deploy/yolov7-w6.yaml', ch=3, nc=80).to(device)\n", "\n", @@ -328,7 +352,7 @@ "\n", "device = select_device('0', batch_size=1)\n", "# model trained by cfg/training/*.yaml\n", - "ckpt = torch.load('cfg/training/yolov7-d6.pt', map_location=device)\n", + "ckpt = torch.load('cfg/training/yolov7-d6_trainig.pt', map_location=device)\n", "# reparameterized model in cfg/deploy/*.yaml\n", "model = Model('cfg/deploy/yolov7-d6.yaml', ch=3, nc=80).to(device)\n", "\n", @@ -414,7 +438,7 @@ "\n", "device = select_device('0', batch_size=1)\n", "# model trained by cfg/training/*.yaml\n", - "ckpt = torch.load('cfg/training/yolov7-e6e.pt', map_location=device)\n", + "ckpt = torch.load('cfg/training/yolov7-e6e_trainig.pt', map_location=device)\n", "# reparameterized model in cfg/deploy/*.yaml\n", "model = Model('cfg/deploy/yolov7-e6e.yaml', ch=3, nc=80).to(device)\n", "\n", @@ -487,7 +511,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.7.0 ('py37')", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -501,7 +525,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.0" + "version": "3.9.7" }, "vscode": { "interpreter": { diff --git a/utils/aws/userdata.sh b/utils/aws/userdata.sh index 5762ae575f..5a99d4bec7 100644 --- a/utils/aws/userdata.sh +++ b/utils/aws/userdata.sh @@ -7,8 +7,8 @@ cd home/ubuntu if [ ! -d yolor ]; then echo "Running first-time script." # install dependencies, download COCO, pull Docker - git clone -b paper https://github.com/WongKinYiu/yolor && sudo chmod -R 777 yolor - cd yolor + git clone -b main https://github.com/WongKinYiu/yolov7 && sudo chmod -R 777 yolov7 + cd yolov7 bash data/scripts/get_coco.sh && echo "Data done." & sudo docker pull nvcr.io/nvidia/pytorch:21.08-py3 && echo "Docker done." & python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &