Skip to content

Latest commit

 

History

History
71 lines (59 loc) · 1.66 KB

README.md

File metadata and controls

71 lines (59 loc) · 1.66 KB

Accurate multi-contrast MRI super-resolution via a dual cross-attention transformer network (DCAMSR)

News

2023.2.3 here we are 🪧🪧🪧

2023.5.24 Early Accepted By MICCAI2023 🎆🎆🎆

Dependencies

  • numpy==1.18.5
  • scikit_image==0.16.2
  • torchvision==0.8.1
  • torch==1.7.0
  • runstats==1.8.0
  • pytorch_lightning==0.9.0
  • h5py==2.10.0
  • PyYAML==5.4
  • timm
  • einops
  • python-opencv

Data:

The data used for the image super-resolution task comes from the fastMRI dataset and M4Raw.

The multi-contrast MR images csv file is released in dataset fold. fastMRI csv file comes from MINet.

Within each task folder, the following structure is expected:

    data0/fastmri_knee
    ├── singlecoil_train
    │   ├── xxx.h5
    │   ├── ...
    ├── singlecoil_val
    │   ├── xxx.h5
    │   ├── ...
    data0/M4RawV1.1
    ├── multicoil_train
    │   ├── xxx.h5
    │   ├── ...
    ├── multicoil_val
    │   ├── xxx.h5
    │   ├── ...

Code Usage

Install

pip install -r requirement.txt

Training

cd experimental/DCAMSR
python train.py

Evaluation

cd experimental/DCAMSR
python test.py --mode test --resume xxx

weight release

Acknowledgement

We borrow some codes from MASA and MINet. We thank the authors for their great work.