-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.py
249 lines (202 loc) · 9.04 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#python 3
#imports
from ast import literal_eval
import warnings
#pandas, numpy, visualization
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
#%matplotlib inline
#NLP
from nltk.stem.snowball import SnowballStemmer
from nltk.tokenize import word_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
#ML
from sklearn.ensemble import RandomForestRegressor, BaggingRegressor
from sklearn import linear_model
from sklearn import cross_validation
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.decomposition import TruncatedSVD
from sklearn import pipeline, grid_search
from sklearn.pipeline import FeatureUnion
from sklearn.ensemble import GradientBoostingRegressor #For Classification
from sklearn.ensemble import AdaBoostRegressor
import time
class cust_regression_vals(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, hd_searches):
d_col_drops=['id', 'product_title', 'product_uid', 'search_term','product_description', 'attributes', 'brand', 'material','attributes_tokens',
'search_term_tokens', 'product_title_tokens','product_description_tokens', 'brand_tokens', 'material_tokens', 'search_units',
'product_title_tokens_uu','product_description_tokens_uu', 'attributes_tokens_uu','search_term_tokens_uu', 'search_no_units',
'title_no_units','descr_no_units', 'attr_no_units','len_search_no_units']
hd_searches = hd_searches.drop(d_col_drops,axis=1).values
return hd_searches
class cust_txt_col(BaseEstimator, TransformerMixin):
def __init__(self, key):
self.key = key
def fit(self, x, y=None):
return self
def transform(self, data_dict):
return data_dict[self.key].apply(str)
if __name__ == "__main__":
start_time = time.time()
print ("----- loading files -----")
print (round(((time.time() - start_time)/60),2))
#load files
train_df = pd.read_csv("C:\\\\Users\\carrai1\\Desktop\\Projects\\HomeDepot\\datasets\\train.csv",encoding="ISO-8859-1")
test_df = pd.read_csv("C:\\\\Users\\carrai1\\Desktop\\Projects\\HomeDepot\\datasets\\test.csv",encoding="ISO-8859-1")
products_df = pd.read_csv("C:\\\\Users\\carrai1\\Desktop\\Projects\\HomeDepot\\datasets\\product_descriptions.csv")
attributes_df = pd.read_csv("C:\\\\Users\\carrai1\\Desktop\\Projects\\HomeDepot\\datasets\\attributes.csv")
test_separation = train_df.shape[0]
all_df = pd.read_csv("C:\\\\Users\\carrai1\\Desktop\\Projects\\HomeDepot\\datasets\\df_all_fixV8.csv",encoding="ISO-8859-1",index_col=False)
all_df["search_term_tokens"] = all_df["search_term_tokens"].fillna("")
train_df = all_df.iloc[:test_separation]
test_df = all_df.iloc[test_separation:]
ytrain = train_df['relevance']
xtrain = train_df.drop('relevance',axis=1)
xtest = test_df.drop('relevance',axis=1)
print (xtrain['search_term_tokens'].head(5))
print ("----- Pipeline -----")
print (round(((time.time() - start_time)/60),2))
rfr = GradientBoostingRegressor(n_estimators=500,random_state=23)
#rfr = AdaBoostRegressor(n_estimators=500, random_state=23)
tfidf = TfidfVectorizer(ngram_range=(1, 1), stop_words='english')
tsvd = TruncatedSVD(n_components=25, random_state = 1)
clf = pipeline.Pipeline([
('union', FeatureUnion(
transformer_list = [
('cst', cust_regression_vals()),
('txt1', pipeline.Pipeline([('s1', cust_txt_col(key='search_term_tokens')), ('tfidf1', tfidf), ('tsvd1', tsvd)])),
('txt2', pipeline.Pipeline([('s2', cust_txt_col(key='product_title_tokens')), ('tfidf2', tfidf), ('tsvd2', tsvd)])),
('txt3', pipeline.Pipeline([('s2', cust_txt_col(key='product_description_tokens')), ('tfidf3', tfidf), ('tsvd3', tsvd)])),
('txt4', pipeline.Pipeline([('s3', cust_txt_col(key='brand_tokens')), ('tfidf4', tfidf), ('tsvd4', tsvd)])),
('txt5', pipeline.Pipeline([('s3', cust_txt_col(key='material_tokens')), ('tfidf5', tfidf), ('tsvd5', tsvd)])),
],
transformer_weights = {
'cst': 1.0,
'txt1': 1.0,
'txt2': 1.0,
'txt3': 0.1,
'txt4': 0.5,
'txt4': 0.2,
},
n_jobs = -1
)),
('rfr', rfr)])
warnings.filterwarnings("ignore", category=DeprecationWarning)
print ("----- fitting grid cv-----")
print (round(((time.time() - start_time)/60),2))
param_grid = {'rfr__min_samples_leaf' : [50,100,250,500],'rfr__subsample':[0.7],"rfr__learning_rate":[0.01]}
model = grid_search.GridSearchCV(estimator = clf, param_grid = param_grid, n_jobs = -1, cv = 2, verbose = 20)
model_fit = model.fit(xtrain, ytrain)
print("Best parameters found by grid search:")
print(model.best_params_)
print("Best CV score:")
print(model.best_score_)
print ("----- predicting -----")
print (round(((time.time() - start_time)/60),2))
y_pred = model.predict(xtest)
print ("----- checks -----")
plt.hist(ytrain - model_fit.predict(xtrain) )
plt.show()
plt.scatter(ytrain,train_df["relevance"] - model_fit.predict(xtrain) )
plt.show()
plt.scatter(ytrain,model_fit.predict(xtrain))
plt.show()
# PREDICTIONS FIX (for predictions over 3)
def fix_predictions (predictions):
predictions_fix=[]
for i in predictions:
if (i>3):
predictions_fix.append(3)
elif (i<1):
predictions_fix.append(1)
else:
predictions_fix.append(i)
return predictions_fix
#predictions_lr2_fix = fix_predictions(predictions_lr2)
predictions_rf_fix = fix_predictions(y_pred)
#plt.hist(predictions_lr2_fix, bins=20)
#plt.show()
plt.hist(predictions_rf_fix, bins=20)
plt.show()
print ("----- Creating sub -----")
print (round(((time.time() - start_time)/60),2))
all_df = pd.read_csv("C:\\\\Users\\carrai1\\Desktop\\Projects\\HomeDepot\\datasets\\df_all_fixV8.csv",encoding="ISO-8859-1",index_col=False)
train_df = all_df.iloc[:test_separation]
test_df = all_df.iloc[test_separation:]
pd.DataFrame({"id": test_df["id"], "relevance": predictions_rf_fix}).to_csv('C:\\\\Users\\carrai1\\Desktop\\Projects\\HomeDepot\\subs\\solution_gb.csv',index=False)
print ("----- END -----")
print (round(((time.time() - start_time)/60),2))
rfr = RandomForestRegressor(n_estimators=3000)
tfidf = TfidfVectorizer(ngram_range=(1, 1), stop_words='english')
tsvd = TruncatedSVD(n_components=25, random_state = 1)
clf = pipeline.Pipeline([
('union', FeatureUnion(
transformer_list = [
('cst', cust_regression_vals()),
('txt1', pipeline.Pipeline([('s1', cust_txt_col(key='search_term_tokens')), ('tfidf1', tfidf), ('tsvd1', tsvd)])),
('txt2', pipeline.Pipeline([('s2', cust_txt_col(key='product_title_tokens')), ('tfidf2', tfidf), ('tsvd2', tsvd)])),
('txt3', pipeline.Pipeline([('s2', cust_txt_col(key='product_description_tokens')), ('tfidf3', tfidf), ('tsvd3', tsvd)])),
('txt4', pipeline.Pipeline([('s3', cust_txt_col(key='brand_tokens')), ('tfidf4', tfidf), ('tsvd4', tsvd)])),
('txt5', pipeline.Pipeline([('s3', cust_txt_col(key='material_tokens')), ('tfidf5', tfidf), ('tsvd5', tsvd)])),
],
transformer_weights = {
'cst': 1.0,
'txt1': 1.0,
'txt2': 1.0,
'txt3': 0.0,
'txt4': 0.3,
'txt4': 0.2,
},
n_jobs = -1
)),
('rfr', rfr)])
warnings.filterwarnings("ignore", category=DeprecationWarning)
print ("----- fitting grid cv-----")
print (round(((time.time() - start_time)/60),2))
param_grid = {'rfr__min_samples_leaf' : [50,100,250,500]}
model = grid_search.GridSearchCV(estimator = clf, param_grid = param_grid, n_jobs = -1, cv = 3, verbose = 20)
model_fit = model.fit(xtrain, ytrain)
print("Best parameters found by grid search:")
print(model.best_params_)
print("Best CV score:")
print(model.best_score_)
print ("----- predicting -----")
print (round(((time.time() - start_time)/60),2))
y_pred = model.predict(xtest)
print ("----- checks -----")
plt.hist(ytrain - model_fit.predict(xtrain) )
plt.show()
plt.scatter(ytrain,train_df["relevance"] - model_fit.predict(xtrain) )
plt.show()
plt.scatter(ytrain,model_fit.predict(xtrain))
plt.show()
# PREDICTIONS FIX (for predictions over 3)
def fix_predictions (predictions):
predictions_fix=[]
for i in predictions:
if (i>3):
predictions_fix.append(3)
elif (i<1):
predictions_fix.append(1)
else:
predictions_fix.append(i)
return predictions_fix
#predictions_lr2_fix = fix_predictions(predictions_lr2)
predictions_rf_fix = fix_predictions(y_pred)
#plt.hist(predictions_lr2_fix, bins=20)
#plt.show()
plt.hist(predictions_rf_fix, bins=20)
plt.show()
print ("----- Creating sub -----")
print (round(((time.time() - start_time)/60),2))
all_df = pd.read_csv("C:\\\\Users\\carrai1\\Desktop\\Projects\\HomeDepot\\datasets\\df_all_fixV8.csv",encoding="ISO-8859-1",index_col=False)
train_df = all_df.iloc[:test_separation]
test_df = all_df.iloc[test_separation:]
pd.DataFrame({"id": test_df["id"], "relevance": predictions_rf_fix}).to_csv('C:\\\\Users\\carrai1\\Desktop\\Projects\\HomeDepot\\subs\\solution_rf.csv',index=False)
print ("----- END -----")
print (round(((time.time() - start_time)/60),2))