-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmerge_and_convert_to_html_coloc2.py
257 lines (230 loc) · 9.45 KB
/
merge_and_convert_to_html_coloc2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 26 17:43:52 2019
@author: naim
This script is similar to merge_and_convert_to_html.py, but adds
the additional columns required for coloc2 secondary datasets
Description file should contain the following information per row:
1. File name to merge
2. Description of the dataset
3. Chromosome column name
4. Basepair position column name
5. SNP ID column name
6. P-value column name
7. Beta column name
8. Standard error column name
9. Number of samples column name
10. Alternate or A1 allele column name
11. Reference or A2 allele column name
12. MAF column name
13. ProbeID column name
"""
import argparse
import numpy as np
import pandas as pd
import gzip
from datetime import datetime
from tqdm import tqdm
import sys
#from bs4 import BeautifulSoup as bs
# Default column names:
CHROM = 'CHR'
BP = 'POS'
SNP = 'SNPID'
P = 'PVAL'
BETA = 'BETA'
SE = 'SE'
N = 'N'
ALT = 'A1'
REF = 'A2'
MAF = 'MAF'
ProbeID = 'ProbeID'
genomicWindowLimit = 2e6
##############################
## Helper functions
##############################
def parseRegionText(regiontext):
regiontext = regiontext.strip().replace(' ','')
chrom = regiontext.split(':')[0].replace('chr','').replace('Chr','')
pos = regiontext.split(':')[1]
startbp = pos.split('-')[0].replace(',','')
endbp = pos.split('-')[1].replace(',','')
#chromLengths = pd.read_csv(os.path.join(MYDIR, 'data/hg19_chrom_lengths.txt'), sep="\t", encoding='utf-8')
#chromLengths.set_index('sequence',inplace=True)
if chrom == 'X':
chrom = 23
#maxChromLength = chromLengths.loc['chrX', 'length']
try:
startbp = int(startbp)
endbp = int(endbp)
except:
raise Exception("Invalid coordinates input")
else:
try:
chrom = int(chrom)
#maxChromLength = chromLengths.loc['chr'+str(chrom), 'length']
startbp = int(startbp)
endbp = int(endbp)
except:
raise Exception("Invalid coordinates input")
if chrom < 1 or chrom > 23:
raise Exception('Chromosome input must be between 1 and 23')
elif startbp > endbp:
raise Exception('Starting chromosome basepair position is greater than ending basepair position')
# elif startbp > maxChromLength or endbp > maxChromLength:
# raise Exception('Start or end coordinates are out of range')
else:
return chrom, startbp, endbp
def checkColnames(filename, cols):
'''
Checks if the 'filename' has the column names in cols (a list of column names);
returns False if any column is absent
'''
num_lines_to_check = 1000
num_lines_checked = 0
if filename.endswith('gz'):
with gzip.open(filename,'rb') as f:
nextline = f.readline().decode('utf-8').strip()
num_lines_checked += 1
while nextline[0:2] == "##" and num_lines_checked <= num_lines_to_check:
nextline = f.readline().decode('utf-8').strip()
num_lines_checked += 1
headerline = nextline.split('\t')
if all(col in headerline for col in cols):
return True
else:
return False
else:
with open(filename,'r') as f:
nextline = f.readline().strip()
num_lines_checked += 1
while nextline[0:2] == "##" and num_lines_checked <= num_lines_to_check:
nextline = f.readline().strip()
num_lines_checked += 1
headerline = nextline.split('\t')
if all(col in headerline for col in cols):
return True
else:
return False
def getNumHeaderLines(file, num_lines_to_check = 1000):
num_header_lines = 0
num_lines_checked = 0
if file.endswith('gz'):
with gzip.open(file, 'rb') as f:
nextline = f.readline().decode('utf-8')
num_lines_checked += 1
while nextline[0:2] == "##" and num_lines_checked <= num_lines_to_check:
num_header_lines += 1
nextline = f.readline().decode('utf-8')
num_lines_checked += 1
else:
with open(file, 'r') as f:
nextline = f.readline()
num_lines_checked += 1
while nextline[0:2] == "##" and num_lines_checked <= num_lines_to_check:
num_header_lines += 1
nextline = f.readline()
num_lines_checked += 1
return num_header_lines
class Logger(object):
def __init__(self, outfilename):
self.terminal = sys.stdout
self.log = open(outfilename, "a")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
##############################
## MAIN
##############################
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Merge several datasets together into HTML tables separated by <h3> title tags')
parser.add_argument('filelist_filename',
help='Filename containing the list of files to be merged together.\n \
The second column (tab-delimited) may contain descriptions of the datasets.\n \
The remaining columns should contain the following information per row:\n \
1. File name to merge\n \
2. Description of the dataset\n \
3. Chromosome column name\n \
4. Basepair position column name\n \
5. SNP ID column name\n \
6. P-value column name\n \
7. Beta column name\n \
8. Standard error column name\n \
9. Number of samples column name\n \
10. Alternate or A1 allele column name\n \
11. Reference or A2 allele column name\n \
12. MAF column name\n \
13. ProbeID column name')
parser.add_argument('coordinates', help="The region coordinates to subset from each file (e.g. 1:500,000-600,000")
parser.add_argument('outfilename', help="Desired output filename for the merged file")
args = parser.parse_args()
filelist_filename = str(args.filelist_filename)
chrom, startbp, endbp = parseRegionText(args.coordinates)
outfilename = str(args.outfilename.replace('.html','') + '.html')
logfilename = str(outfilename.replace('.html','') + '.log')
# filelist_filename = "files_test.txt"
# outfilename = "slc9a3_gwas_mqtl.html"
# coordinates = 'chr5:384,664-612803'
# chrom, startbp, endbp = parseRegionText(coordinates)
old_stdout = sys.stdout
sys.stdout = Logger(logfilename)
print('Start: ' + datetime.now().strftime('%c'))
print('filelist_filename: ' + filelist_filename)
print('Region: ' + str(chrom)+':'+str(startbp)+'-'+str(endbp))
print('outfilename: ' + outfilename)
print('Log file: ' + logfilename)
print('Reading list of files file')
filelist = pd.read_csv(filelist_filename, sep='\t', header=None)
files = list(filelist.iloc[:,0])
file_descriptions = list(filelist.iloc[:,1])
chrom_colnames = list(filelist.iloc[:,2])
bp_colnames = list(filelist.iloc[:,3])
snp_colnames = list(filelist.iloc[:,4])
pval_colnames = list(filelist.iloc[:,5])
print('Verifying settings in filelist_filename')
for i in np.arange(len(files)):
if not checkColnames(files[i], list(filelist.iloc[i,2:12])):
raise Exception('Column names given: ' + str(list(filelist.iloc[i,2:12])) + '\n Not all match for file ' + files[i])
print('Merging files')
final_merge = '<!DOCTYPE html>\n<html>'
for i in tqdm(np.arange(len(files))):
df = pd.read_csv(files[i], sep='\t', skiprows=getNumHeaderLines(files[i]))
desired_cols = list(filelist.iloc[i,2:12])
df = df[desired_cols].rename(columns={
desired_cols[0]: CHROM
,desired_cols[1]: BP
,desired_cols[2]: SNP
,desired_cols[3]: P
,desired_cols[4]: BETA
,desired_cols[5]: SE
,desired_cols[6]: N
,desired_cols[7]: ALT
,desired_cols[8]: REF
,desired_cols[9]: MAF
})
if chrom == 23:
df[CHROM] = np.repeat(chrom, df.shape[0])
df[CHROM] = [ int(str(x).lower().replace('chr','').replace('chrom','')) for x in list(df[CHROM]) ]
df = df.loc[ (df[CHROM]==chrom) & (df[BP]>=startbp) & (df[BP]<=endbp) ]
probeidcol = pd.DataFrame({ProbeID: np.repeat(filelist.iloc[i,12], df.shape[0])})
df = pd.concat([df, probeidcol], axis=1)
h3tag = '<h3>'+file_descriptions[i]+'</h3>'
df_html_str = df.to_html(index=False)
final_merge += h3tag + df_html_str
final_merge += '</html>'
print('Writing merged output')
with open(outfilename, 'w') as f_out:
f_out.write(final_merge)
# Quick check:
# with open(outfilename, encoding='utf-8', errors='replace') as f:
# html = f.read()
# soup = bs(html, 'lxml')
# table_titles = soup.find_all('h3')
# table_titles = [x.text for x in table_titles]
# tables = pd.read_html(outfilename)
print('Done')
print('End: ' + datetime.now().strftime('%c'))
sys.stdout = old_stdout