-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataLoader.py
208 lines (172 loc) · 8.08 KB
/
DataLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
from torch.utils.data import Dataset
import albumentations as A
from albumentations.pytorch import ToTensorV2
import cv2
import torch
import numpy as np
from torch.nn import functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils import train_transforms, get_boxes_from_mask, init_point_sampling
import json
import random
class TestingDataset(Dataset):
def __init__(self, data_path, image_size=256, mode='test', requires_name=True, point_num=1, return_ori_mask=True, prompt_path=None):
"""
Initializes a TestingDataset object.
Args:
data_path (str): The path to the data.
image_size (int, optional): The size of the image. Defaults to 256.
mode (str, optional): The mode of the dataset. Defaults to 'test'.
requires_name (bool, optional): Indicates whether the dataset requires image names. Defaults to True.
point_num (int, optional): The number of points to retrieve. Defaults to 1.
return_ori_mask (bool, optional): Indicates whether to return the original mask. Defaults to True.
prompt_path (str, optional): The path to the prompt file. Defaults to None.
"""
self.image_size = image_size
self.return_ori_mask = return_ori_mask
self.prompt_path = prompt_path
self.prompt_list = {} if prompt_path is None else json.load(open(prompt_path, "r"))
self.requires_name = requires_name
self.point_num = point_num
json_file = open(os.path.join(data_path, f'label2image_{mode}.json'), "r")
dataset = json.load(json_file)
self.image_paths = list(dataset.values())
self.label_paths = list(dataset.keys())
self.pixel_mean = [123.675, 116.28, 103.53]
self.pixel_std = [58.395, 57.12, 57.375]
def __getitem__(self, index):
"""
Retrieves and preprocesses an item from the dataset.
Args:
index (int): The index of the item to retrieve.
Returns:
dict: A dictionary containing the preprocessed image and associated information.
"""
image_input = {}
try:
image = cv2.imread(self.image_paths[index])
image = (image - self.pixel_mean) / self.pixel_std
except:
print(self.image_paths[index])
mask_path = self.label_paths[index]
ori_np_mask = cv2.imread(mask_path, 0)
if ori_np_mask.max() == 255:
ori_np_mask = ori_np_mask / 255
assert np.array_equal(ori_np_mask, ori_np_mask.astype(bool)), f"Mask should only contain binary values 0 and 1. {self.label_paths[index]}"
h, w = ori_np_mask.shape
ori_mask = torch.tensor(ori_np_mask).unsqueeze(0)
transforms = train_transforms(self.image_size, h, w)
augments = transforms(image=image, mask=ori_np_mask)
image, mask = augments['image'], augments['mask'].to(torch.int64)
if self.prompt_path is None:
boxes = get_boxes_from_mask(mask, max_pixel = 0)
point_coords, point_labels = init_point_sampling(mask, self.point_num)
else:
prompt_key = mask_path.split('/')[-1]
boxes = torch.as_tensor(self.prompt_list[prompt_key]["boxes"], dtype=torch.float)
point_coords = torch.as_tensor(self.prompt_list[prompt_key]["point_coords"], dtype=torch.float)
point_labels = torch.as_tensor(self.prompt_list[prompt_key]["point_labels"], dtype=torch.int)
image_input["image"] = image
image_input["label"] = mask.unsqueeze(0)
image_input["point_coords"] = point_coords
image_input["point_labels"] = point_labels
image_input["boxes"] = boxes
image_input["original_size"] = (h, w)
image_input["label_path"] = '/'.join(mask_path.split('/')[:-1])
if self.return_ori_mask:
image_input["ori_label"] = ori_mask
image_name = self.label_paths[index].split('/')[-1]
if self.requires_name:
image_input["name"] = image_name
return image_input
else:
return image_input
def __len__(self):
return len(self.label_paths)
class TrainingDataset(Dataset):
def __init__(self, data_dir, image_size=256, mode='train', requires_name=True, point_num=1, mask_num=5):
"""
Initializes a training dataset.
Args:
data_dir (str): Directory containing the dataset.
image_size (int, optional): Desired size for the input images. Defaults to 256.
mode (str, optional): Mode of the dataset. Defaults to 'train'.
requires_name (bool, optional): Indicates whether to include image names in the output. Defaults to True.
num_points (int, optional): Number of points to sample. Defaults to 1.
num_masks (int, optional): Number of masks to sample. Defaults to 5.
"""
self.image_size = image_size
self.requires_name = requires_name
self.point_num = point_num
self.mask_num = mask_num
self.pixel_mean = [123.675, 116.28, 103.53]
self.pixel_std = [58.395, 57.12, 57.375]
dataset = json.load(open(os.path.join(data_dir, f'image2label_{mode}.json'), "r"))
self.image_paths = list(dataset.keys())
self.label_paths = list(dataset.values())
def __getitem__(self, index):
"""
Returns a sample from the dataset.
Args:
index (int): Index of the sample.
Returns:
dict: A dictionary containing the sample data.
"""
image_input = {}
try:
image = cv2.imread(self.image_paths[index])
image = (image - self.pixel_mean) / self.pixel_std
except:
print(self.image_paths[index])
h, w, _ = image.shape
transforms = train_transforms(self.image_size, h, w)
masks_list = []
boxes_list = []
point_coords_list, point_labels_list = [], []
mask_path = random.choices(self.label_paths[index], k=self.mask_num)
for m in mask_path:
pre_mask = cv2.imread(m, 0)
if pre_mask.max() == 255:
pre_mask = pre_mask / 255
augments = transforms(image=image, mask=pre_mask)
image_tensor, mask_tensor = augments['image'], augments['mask'].to(torch.int64)
boxes = get_boxes_from_mask(mask_tensor)
point_coords, point_label = init_point_sampling(mask_tensor, self.point_num)
masks_list.append(mask_tensor)
boxes_list.append(boxes)
point_coords_list.append(point_coords)
point_labels_list.append(point_label)
mask = torch.stack(masks_list, dim=0)
boxes = torch.stack(boxes_list, dim=0)
point_coords = torch.stack(point_coords_list, dim=0)
point_labels = torch.stack(point_labels_list, dim=0)
image_input["image"] = image_tensor.unsqueeze(0)
image_input["label"] = mask.unsqueeze(1)
image_input["boxes"] = boxes
image_input["point_coords"] = point_coords
image_input["point_labels"] = point_labels
image_name = self.image_paths[index].split('/')[-1]
if self.requires_name:
image_input["name"] = image_name
return image_input
else:
return image_input
def __len__(self):
return len(self.image_paths)
def stack_dict_batched(batched_input):
out_dict = {}
for k,v in batched_input.items():
if isinstance(v, list):
out_dict[k] = v
else:
out_dict[k] = v.reshape(-1, *v.shape[2:])
return out_dict
if __name__ == "__main__":
train_dataset = TrainingDataset("data_demo", image_size=256, mode='train', requires_name=True, point_num=1, mask_num=5)
print("Dataset:", len(train_dataset))
train_batch_sampler = DataLoader(dataset=train_dataset, batch_size=2, shuffle=True, num_workers=4)
for i, batched_image in enumerate(tqdm(train_batch_sampler)):
batched_image = stack_dict_batched(batched_image)
print(batched_image["image"].shape, batched_image["label"].shape)