-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
373 lines (306 loc) · 13.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from albumentations.pytorch import ToTensorV2
import cv2
import albumentations as A
import torch
import numpy as np
from torch.nn import functional as F
from skimage.measure import label, regionprops
from matplotlib import pyplot as plt
import random
import torch.nn as nn
import logging
import os
def get_boxes_from_mask(mask, box_num=1, std = 0.1, max_pixel = 5):
"""
Args:
mask: Mask, can be a torch.Tensor or a numpy array of binary mask.
box_num: Number of bounding boxes, default is 1.
std: Standard deviation of the noise, default is 0.1.
max_pixel: Maximum noise pixel value, default is 5.
Returns:
noise_boxes: Bounding boxes after noise perturbation, returned as a torch.Tensor.
"""
if isinstance(mask, torch.Tensor):
mask = mask.numpy()
label_img = label(mask)
regions = regionprops(label_img)
# Iterate through all regions and get the bounding box coordinates
boxes = [tuple(region.bbox) for region in regions]
# If the generated number of boxes is greater than the number of categories,
# sort them by region area and select the top n regions
if len(boxes) >= box_num:
sorted_regions = sorted(regions, key=lambda x: x.area, reverse=True)[:box_num]
boxes = [tuple(region.bbox) for region in sorted_regions]
# If the generated number of boxes is less than the number of categories,
# duplicate the existing boxes
elif len(boxes) < box_num:
num_duplicates = box_num - len(boxes)
boxes += [boxes[i % len(boxes)] for i in range(num_duplicates)]
# Perturb each bounding box with noise
noise_boxes = []
for box in boxes:
y0, x0, y1, x1 = box
width, height = abs(x1 - x0), abs(y1 - y0)
# Calculate the standard deviation and maximum noise value
noise_std = min(width, height) * std
max_noise = min(max_pixel, int(noise_std * 5))
# Add random noise to each coordinate
try:
noise_x = np.random.randint(-max_noise, max_noise)
except:
noise_x = 0
try:
noise_y = np.random.randint(-max_noise, max_noise)
except:
noise_y = 0
x0, y0 = x0 + noise_x, y0 + noise_y
x1, y1 = x1 + noise_x, y1 + noise_y
noise_boxes.append((x0, y0, x1, y1))
return torch.as_tensor(noise_boxes, dtype=torch.float)
def select_random_points(pr, gt, point_num = 9):
"""
Selects random points from the predicted and ground truth masks and assigns labels to them.
Args:
pred (torch.Tensor): Predicted mask tensor.
gt (torch.Tensor): Ground truth mask tensor.
point_num (int): Number of random points to select. Default is 9.
Returns:
batch_points (np.array): Array of selected points coordinates (x, y) for each batch.
batch_labels (np.array): Array of corresponding labels (0 for background, 1 for foreground) for each batch.
"""
pred, gt = pr.data.cpu().numpy(), gt.data.cpu().numpy()
error = np.zeros_like(pred)
error[pred != gt] = 1
# error = np.logical_xor(pred, gt)
batch_points = []
batch_labels = []
for j in range(error.shape[0]):
one_pred = pred[j].squeeze(0)
one_gt = gt[j].squeeze(0)
one_erroer = error[j].squeeze(0)
indices = np.argwhere(one_erroer == 1)
if indices.shape[0] > 0:
selected_indices = indices[np.random.choice(indices.shape[0], point_num, replace=True)]
else:
indices = np.random.randint(0, 256, size=(point_num, 2))
selected_indices = indices[np.random.choice(indices.shape[0], point_num, replace=True)]
selected_indices = selected_indices.reshape(-1, 2)
points, labels = [], []
for i in selected_indices:
x, y = i[0], i[1]
if one_pred[x,y] == 0 and one_gt[x,y] == 1:
label = 1
elif one_pred[x,y] == 1 and one_gt[x,y] == 0:
label = 0
else:
label = -1
points.append((y, x)) #Negate the coordinates
labels.append(label)
batch_points.append(points)
batch_labels.append(labels)
return np.array(batch_points), np.array(batch_labels)
def init_point_sampling(mask, get_point=1):
"""
Initialization samples points from the mask and assigns labels to them.
Args:
mask (torch.Tensor): Input mask tensor.
num_points (int): Number of points to sample. Default is 1.
Returns:
coords (torch.Tensor): Tensor containing the sampled points' coordinates (x, y).
labels (torch.Tensor): Tensor containing the corresponding labels (0 for background, 1 for foreground).
"""
if isinstance(mask, torch.Tensor):
mask = mask.numpy()
# Get coordinates of black/white pixels
fg_coords = np.argwhere(mask == 1)[:,::-1]
bg_coords = np.argwhere(mask == 0)[:,::-1]
fg_size = len(fg_coords)
bg_size = len(bg_coords)
if get_point == 1:
if fg_size > 0:
index = np.random.randint(fg_size)
fg_coord = fg_coords[index]
label = 1
else:
index = np.random.randint(bg_size)
fg_coord = bg_coords[index]
label = 0
return torch.as_tensor([fg_coord.tolist()], dtype=torch.float), torch.as_tensor([label], dtype=torch.int)
else:
num_fg = get_point // 2
num_bg = get_point - num_fg
fg_indices = np.random.choice(fg_size, size=num_fg, replace=True)
bg_indices = np.random.choice(bg_size, size=num_bg, replace=True)
fg_coords = fg_coords[fg_indices]
bg_coords = bg_coords[bg_indices]
coords = np.concatenate([fg_coords, bg_coords], axis=0)
labels = np.concatenate([np.ones(num_fg), np.zeros(num_bg)]).astype(int)
indices = np.random.permutation(get_point)
coords, labels = torch.as_tensor(coords[indices], dtype=torch.float), torch.as_tensor(labels[indices], dtype=torch.int)
return coords, labels
def train_transforms(img_size, ori_h, ori_w):
transforms = []
if ori_h < img_size and ori_w < img_size:
transforms.append(A.PadIfNeeded(min_height=img_size, min_width=img_size, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0)))
else:
transforms.append(A.Resize(int(img_size), int(img_size), interpolation=cv2.INTER_NEAREST))
transforms.append(ToTensorV2(p=1.0))
return A.Compose(transforms, p=1.)
def get_logger(filename, verbosity=1, name=None):
level_dict = {0: logging.DEBUG, 1: logging.INFO, 2: logging.WARNING}
formatter = logging.Formatter(
"[%(asctime)s][%(filename)s][line:%(lineno)d][%(levelname)s] %(message)s"
)
logger = logging.getLogger(name)
logger.setLevel(level_dict[verbosity])
os.makedirs(os.path.dirname(filename), exist_ok=True)
fh = logging.FileHandler(filename, "w")
fh.setFormatter(formatter)
logger.addHandler(fh)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
logger.addHandler(sh)
return logger
def generate_point(masks, labels, low_res_masks, batched_input, point_num):
masks_clone = masks.clone()
masks_sigmoid = torch.sigmoid(masks_clone)
masks_binary = (masks_sigmoid > 0.5).float()
low_res_masks_clone = low_res_masks.clone()
low_res_masks_logist = torch.sigmoid(low_res_masks_clone)
points, point_labels = select_random_points(masks_binary, labels, point_num = point_num)
batched_input["mask_inputs"] = low_res_masks_logist
batched_input["point_coords"] = torch.as_tensor(points)
batched_input["point_labels"] = torch.as_tensor(point_labels)
batched_input["boxes"] = None
return batched_input
def setting_prompt_none(batched_input):
batched_input["point_coords"] = None
batched_input["point_labels"] = None
batched_input["boxes"] = None
return batched_input
def draw_boxes(img, boxes):
img_copy = np.copy(img)
for box in boxes:
cv2.rectangle(img_copy, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
return img_copy
def save_masks(preds, save_path, mask_name, image_size, original_size, pad=None, boxes=None, points=None, visual_prompt=False):
ori_h, ori_w = original_size
preds = torch.sigmoid(preds)
preds[preds > 0.5] = int(1)
preds[preds <= 0.5] = int(0)
mask = preds.squeeze().cpu().numpy()
mask = cv2.cvtColor(mask * 255, cv2.COLOR_GRAY2BGR)
if visual_prompt: #visualize the prompt
if boxes is not None:
boxes = boxes.squeeze().cpu().numpy()
x0, y0, x1, y1 = boxes
if pad is not None:
x0_ori = int((x0 - pad[1]) + 0.5)
y0_ori = int((y0 - pad[0]) + 0.5)
x1_ori = int((x1 - pad[1]) + 0.5)
y1_ori = int((y1 - pad[0]) + 0.5)
else:
x0_ori = int(x0 * ori_w / image_size)
y0_ori = int(y0 * ori_h / image_size)
x1_ori = int(x1 * ori_w / image_size)
y1_ori = int(y1 * ori_h / image_size)
boxes = [(x0_ori, y0_ori, x1_ori, y1_ori)]
mask = draw_boxes(mask, boxes)
if points is not None:
point_coords, point_labels = points[0].squeeze(0).cpu().numpy(), points[1].squeeze(0).cpu().numpy()
point_coords = point_coords.tolist()
if pad is not None:
ori_points = [[int((x * ori_w / image_size)) , int((y * ori_h / image_size))]if l==0 else [x - pad[1], y - pad[0]] for (x, y), l in zip(point_coords, point_labels)]
else:
ori_points = [[int((x * ori_w / image_size)) , int((y * ori_h / image_size))] for x, y in point_coords]
for point, label in zip(ori_points, point_labels):
x, y = map(int, point)
color = (0, 255, 0) if label == 1 else (0, 0, 255)
mask[y, x] = color
cv2.drawMarker(mask, (x, y), color, markerType=cv2.MARKER_CROSS , markerSize=7, thickness=2)
os.makedirs(save_path, exist_ok=True)
mask_path = os.path.join(save_path, f"{mask_name}")
cv2.imwrite(mask_path, np.uint8(mask))
#Loss funcation
class FocalLoss(nn.Module):
def __init__(self, gamma=2.0, alpha=0.25):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
def forward(self, pred, mask):
"""
pred: [B, 1, H, W]
mask: [B, 1, H, W]
"""
assert pred.shape == mask.shape, "pred and mask should have the same shape."
p = torch.sigmoid(pred)
num_pos = torch.sum(mask)
num_neg = mask.numel() - num_pos
w_pos = (1 - p) ** self.gamma
w_neg = p ** self.gamma
loss_pos = -self.alpha * mask * w_pos * torch.log(p + 1e-12)
loss_neg = -(1 - self.alpha) * (1 - mask) * w_neg * torch.log(1 - p + 1e-12)
loss = (torch.sum(loss_pos) + torch.sum(loss_neg)) / (num_pos + num_neg + 1e-12)
return loss
class DiceLoss(nn.Module):
def __init__(self, smooth=1.0):
super(DiceLoss, self).__init__()
self.smooth = smooth
def forward(self, pred, mask):
"""
pred: [B, 1, H, W]
mask: [B, 1, H, W]
"""
assert pred.shape == mask.shape, "pred and mask should have the same shape."
p = torch.sigmoid(pred)
intersection = torch.sum(p * mask)
union = torch.sum(p) + torch.sum(mask)
dice_loss = (2.0 * intersection + self.smooth) / (union + self.smooth)
return 1 - dice_loss
class MaskIoULoss(nn.Module):
def __init__(self, ):
super(MaskIoULoss, self).__init__()
def forward(self, pred_mask, ground_truth_mask, pred_iou):
"""
pred_mask: [B, 1, H, W]
ground_truth_mask: [B, 1, H, W]
pred_iou: [B, 1]
"""
assert pred_mask.shape == ground_truth_mask.shape, "pred_mask and ground_truth_mask should have the same shape."
p = torch.sigmoid(pred_mask)
intersection = torch.sum(p * ground_truth_mask)
union = torch.sum(p) + torch.sum(ground_truth_mask) - intersection
iou = (intersection + 1e-7) / (union + 1e-7)
iou_loss = torch.mean((iou - pred_iou) ** 2)
return iou_loss
class FocalDiceloss_IoULoss(nn.Module):
def __init__(self, weight=20.0, iou_scale=1.0):
super(FocalDiceloss_IoULoss, self).__init__()
self.weight = weight
self.iou_scale = iou_scale
self.focal_loss = FocalLoss()
self.dice_loss = DiceLoss()
self.maskiou_loss = MaskIoULoss()
def forward(self, pred, mask, pred_iou):
"""
pred: [B, 1, H, W]
mask: [B, 1, H, W]
"""
assert pred.shape == mask.shape, "pred and mask should have the same shape."
focal_loss = self.focal_loss(pred, mask)
dice_loss =self.dice_loss(pred, mask)
loss1 = self.weight * focal_loss + dice_loss
loss2 = self.maskiou_loss(pred, mask, pred_iou)
loss = loss1 + loss2 * self.iou_scale
return loss
def print_model_parameters(model):
total_params = 0
trainable_params = 0
for param in model.parameters():
total_params += param.numel()
if param.requires_grad:
trainable_params += param.numel()
trainable_percentage = (trainable_params / total_params) * 100
print(f"Total Parameters: {total_params}")
print(f"Trainable Parameters: {trainable_params}")
print(f"Trainable Parameters Percentage: {trainable_percentage:.2f}%")