forked from euroargodev/seaice_profile
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetaprof_satice_climate.m
259 lines (232 loc) · 8.63 KB
/
metaprof_satice_climate.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
function [pix_ice,dist_ice,sat_ice]=metaprof_satice_climate(datev,lon,lat,sat_dir)
% This function takes the metadata of a hydrographic profile (date,lon,lat)
% and extracts the sea ice information for that day and position from the
% OSI-SAF satellite product. If the image is not locally available, the
% code downloads the image from the OSI-SAF ftp server.
% METAPROF_SATICE also calculates the distance to three categories of sea ice (according to the concentration): open water
% (concentration between 1-40%), open ice (40-70%) and close ice (>70%).
% INPUTS
% DATEV: Date of the profile in vector format (minimum [YYYY MM DD])
% LON, LAT: Profile position
% SAT_DIR: directory where the sea ice image are/will be locally stored*
% OUTPUTS
% The outputs are organized in 3 structures
% PIX_ICE: Satellite data extracted for the closest pixel
% DIST_ICE: Distance to the closest sea ice per category
% SAT_ICE: Satellite data extracted for the rectangular area containing the
% search radius.
% more details below the example
% EXAMPLE
% sat_dir='\\win.bsh.de\root$\Standard\Hamburg\Homes\Homes00\bm2286\ICE\ice_im\';
% datev=[2011 11 9 21 58 44];
% lon=-5.1730;
% lat= 76.0195;
% [pix_ice,dist_ice,sat_ice]=metaprof_satice(datev,lon,lat,sat_dir);
% * If images are already stored locally the images in sat_dir need to be
% stored in subfolders as in the OSI SAF ftp website. For example, the image
% ice_conc_nh_polstere-100_multi_201207011200.nc needs to be stored in the
% folder 'sat_dir'/2012/07/ for the script to find it.
% THINGS YOU CAN CHANGE
% - Ice categories for the distance to ice calculations
% This thresholds and number of categories can be changed in the
% ICE_CAT_LOW variable (lower boundary for each category).
% - Search radius to find nearby ice
% SEARCH_RADIUS variable (default is 10^5 m or 100 km)
% OUTPUD DETAILS
% Pixel data - PIX_ICE
% LON and LAT give the position of the pixel's center
% DATA contains the data for each one of the satellite variables
% VARS contains the name of each variable
% DIST is the distance from the profile position to the pixel's center
% IX,IY and AIX,AIY are the indices of the pixel position in the
% coordinates of the extracted data (stored in SAT_ICE) and in the original
% image coordinates, respectively
% Distance to ice - DIST_ICE
% each field contains a value for each ice category
% ICE_CAT_LB contains the lower boundary of each ice category (upper
% boundary is the following element or 100 for the last one since are
% monotonically increasing)
% ISIN is 1 if the pixel is in that category and 0 otherwise
% DIST is the distance from the profile position to the closest ice pixel
% in that category. Is 0 if ISIN is 1 and NAN if the category is not found
% in the search region
% XLAND is a flag that is 1 if the path between the profile an the pixel crosses land
% CICE is the ice concentration of the pixel
% LON and LAT are the positions of the pixels
% IX,IY and AIX,AIY are the indices of the pixel position lile in PIX_ICE
% Satellite data - SAT_ICE
% LON and LAT are the longitude and latitude grids
% DATA contains the data for each one of the satellite variables
% VARS contains the name of each variable
% IMAGE is the image name
% ST and CT are the Start and the count variables to extract the satellite
% data from the netcdf file
% RADIUS is the search radius in meters
% Ingrid M. Angel-Benavides (BSH)07.2020 (Matlab 2018b)
% THE CODE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND
%% getting ice categories info
ice_cat_low=[1 40 70];
n_ice_cat=numel(ice_cat_low);
ithres=[ice_cat_low 100];
search_radius=10^5;
%% Images default info
% image text string
if lat>0
concstr='ice_conc_nh_ease';
else
concstr='ice_conc_sh_ease';
end
% OSI-SAF ftp site
indir_sat='reprocessed/ice/conc/v2p0/';
site='osisaf.met.no';
%% Access satellite image
% download sea ice concentration image if is not locally available
disp('Checking if the image is locally available')
% get image local full path
YYs=num2str(datev(1));MMs=num2str(datev(2),'%02.f');DDs=num2str(datev(3),'%02.f');
indir=[sat_dir YYs '\' MMs '\'];filename=[concstr '*' YYs MMs DDs '*.nc'];
% check if the image is there
d=dir([indir filename]);
if isempty(d)% if is there get the image from ftp server
disp('downloading missing image')
% connecting to ftp site
tic
f = ftp(site);
cd(f); sf=struct(f); sf.jobject.enterLocalPassiveMode();
cd(f,indir_sat);
% going to directory
cd(f,YYs);
cd(f,MMs);
% getting the image
mget(f,[m_elevstr '*' YYs MMs DDs '*.nc'],[sat_dir YYs '\' MMs '\']);
close(f)
toc
disp('.')
else
disp('Image is locally available')
end
%% Find region of interest
% get points in a circle
[lon2,lat2,a21] = m_fdist(lon,lat,0:10:360,search_radius);
% convert longitude
lon2=convertlon(lon2,180);
% find limits to extract image pixels in the region
lonlims=[min(lon2) max(lon2)];
latlims=[min(lat2) max(lat2)];
%% Extract image data
tmp=dir([indir filename]);
% get exact image name
filename=tmp.name;
% get indices for extraction
[st,ct,geovars,typevars,S,strext]=get_geosubsetind(lonlims,latlims,indir,filename);
if isnan(st)==0
% get grid
glat=double(ncread([indir filename],'lat',st(1:2),ct(1:2)));
glon=double(ncread([indir filename],'lon',st(1:2),ct(1:2)));
% get geovariables in area
fip=[indir,filename];
for j=1:numel(geovars)
try eval(['tmp=' strext{j} ])
sat(:,:,j)=double(tmp);
end
end
% get closest pixel data (in image coordinates)
% for the selected subset
[ix,iy,mdist]=closest_gcell(lon, lat, glon, glat);
% for the entire image
aix=st(1)+ix-1;aiy=st(2)+iy-1;
% extract data for the closest pixel center
lon_pix=glon(ix,iy,:);lat_pix=glat(ix,iy,:);
sat_pix=sat(ix,iy,:);
%% Getting land mask
m_proj('lambert','long',lonlims,'lat',latlims);
[bath,lobath,labath]=m_elev([lonlims latlims]);
[lon_pts,lat_pts]=corners(lonlims,latlims);
in=inpolygon(lon,lat,lon_pts,lat_pts);
F=scatteredInterpolant(lobath(:),labath(:),bath(:));
BATH=F(glon,glat);
BATH(in==0)=NaN;
%Apply land mask in lon lat grid
glon(isnan(BATH))=NaN;glon(BATH>=0)=NaN;
glat(isnan(BATH))=NaN;glat(BATH>=0)=NaN;
%% Distance to ice
% calculate distance to each pixel in the extracted image subset
d=nan(size(glon));
indx=find(isnan(glon)==0);
for kk=1:numel(indx)
k=indx(kk);
d(k)=m_lldist([lon glon(k)],[lat glat(k)]);
end
% for each ice category
for i=1:3
% check if the pixel is in that category
isin(i)=sat_pix(:,1)>=ithres(:,i) & sat_pix(:,1)<=ithres(:,i+1);
if isin(1,i)==1 % if it is, then distance is 0 and the ix, iy_ice are NaN
% because they are equal to ix
dice(i)=0;
cice(i)=NaN;
ix_ice(i)=NaN;iy_ice(i)=NaN;
lon_ice(i)=NaN;lat_ice(i)=NaN;
xland(i)=NaN;
else
% if the pixel is not in that category, make a mask of the pixels
% in the category
mtype=sat(:,:,1)>=ithres(:,i) & sat(:,:,1)<=ithres(:,i+1);
% mask out pixels outside the category
d2=d;d2(mtype==0)=NaN;
if sum(isnan(d2(:)))<numel(d2) % if there are pixels in the category
dice(i)=min(d2(:)); % find the closest (shortest distance)
[ix_ice(i),iy_ice(i)]=find(d2==dice(i)); % and store the image coodinates
cice(i)=sat(ix_ice(i),iy_ice(i),1);
lon_ice(i)=glon(ix_ice(i),iy_ice(i));
lat_ice(i)=glat(ix_ice(i),iy_ice(i));
% check if path crosses land
[d2,lons,lats]=m_lldist([lon lon_ice(i)],[lat lon_ice(i)],10);
if numel(find(F(lons,lats)>=0))==0
xland(i)=0;
else
xland(i)=1;
end
else % if there are no pixels in that category, the distance to ice is NaN and the positions are also NaN
dice(i)=NaN;
cice(i)=NaN;
ix_ice(i)=NaN;iy_ice(i)=NaN;
lon_ice(i)=NaN;lat_ice(i)=NaN;
xland(i)=NaN;
end
end
end
% indices in original image coordinates
aix_ice=st(1)+ix_ice-1;aiy_ice=st(2)+iy_ice-1;
%% Organize output
% Pixel data
pix_ice.sic=sat_pix(:,:,1);
pix_ice.lon=lon_pix;
pix_ice.lon=lat_pix;
pix_ice.data=squeeze(sat_pix);
pix_ice.dist=mdist;
pix_ice.ix=ix;pix_ice.iy=iy;
pix_ice.aix=aix;pix_ice.aiy=aiy;
pix_ice.vars=geovars;
% Distance to ice
dist_ice.ice_cat_lb=ice_cat_low;
dist_ice.isin=double(isin);
dist_ice.dist=dice;
dist_ice.xland=xland;
dist_ice.conc=cice;
dist_ice.lon=lon_ice;
dist_ice.lat=lat_ice;
dist_ice.ix=ix_ice;dist_ice.iy=iy_ice;
dist_ice.aix=aix_ice;dist_ice.aiy=aiy_ice;
% Satellite data
sat_ice.lon=glon;sat_ice.lat=glat;
sat_ice.vars=geovars;
sat_ice.data=sat;
sat_ice.st=st;sat_ice.ct=ct;
sat_ice.radius=search_radius;
sat_ice.image=filename;
else
pix_ice=NaN;
dist_ice=NaN;
sat_ice=NaN;
end