-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis_spark.py
143 lines (111 loc) · 4.7 KB
/
analysis_spark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib.ticker import ScalarFormatter
import numpy as np
import pandas as pd
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext
from pyspark.sql import functions as F
from pyspark.sql import types as T
import seaborn as sns
sns.set_style('ticks')
sns.set_context('paper')
matplotlib.rcParams['font.size'] = 10
matplotlib.rcParams['axes.labelsize'] = 10
matplotlib.rcParams['xtick.labelsize'] = 10
matplotlib.rcParams['ytick.labelsize'] = 10
matplotlib.rcParams['axes.titlesize'] = 10
matplotlib.rcParams['font.family'] = 'serif'
matplotlib.rcParams['savefig.dpi'] = 600
matplotlib.rcParams['lines.markersize'] = 3
matplotlib.rcParams['lines.linewidth'] = 1
pd.options.display.width = 200
conf = SparkConf()
conf.setMaster("local[30]")
conf.setAppName("Author Roles")
conf.set("spark.local.dir", "../tmp")
conf.set("spark.executor.memory", "50g")
conf.set("spark.driver.maxResultSize", "50g")
conf.set("spark.shuffle.consolidateFiles", "true")
#conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sc = SparkContext(conf=conf)
sqlContext = SQLContext(sc)
DATA_DIR = "data"
PLOT_DIR = "plots"
OUT_DIR = "output"
columns = ["PMID", "Year", "AbsVal", "TFirstP", "VolFirstP", "acc_pos_vel_min", "acc_pos_vel_max", "acc_neg_vel_max", "acc_neg_vel_min", "Pair_AbsVal", "Pair_TFirstP", "Pair_VolFirstP", "Mesh_counts", "Exploded_Mesh_counts"]
df = sqlContext.read.format("csv").options(header='false', inferschema='true', delimiter='\t').load("out/pmid_novelty_all_scores_mesh_c")
df = df.selectExpr(*("%s as %s" % (df.columns[i], k) for i,k in enumerate(columns)))
for k in ["acc_pos_vel_min", "acc_pos_vel_max", "acc_neg_vel_max", "acc_neg_vel_min", "Pair_AbsVal", "Pair_TFirstP", "Pair_VolFirstP"]:
df = df.withColumn(k, df[k].cast(T.DoubleType()))
# Get data for distribution of Scores
score_types = ["TFirstP", "VolFirstP", "Pair_TFirstP", "Pair_VolFirstP"]
bins = [range(60), reduce(lambda x, y: x + y, [[0]] + [(10**k*np.arange(1,10)).tolist() for k in range(6)])]
data = []
for i, k in enumerate(score_types):
print "Processing %s" % k
j = i % 2
x, y = df[(df["Year"] >= 1985)].rdd.map(lambda x: x[k]).histogram(bins[j])
data.append((x,y))
# Plot distribion data
plt.close("all")
plt.clf()
fig, ax = plt.subplots(1,2, figsize=(6,3.2))
y_label = "Cumulative proportion of papers\nin MEDLINE since 1985"
x_labels = ["Years since first publication", "Papers since first publication"]
labels = ["Individual concept", "Pair of concepts"]
colors = ["black", "red"]
markers = ["s", "o"]
for i, k in enumerate(score_types):
print "Plotting %s" % k
j = i % 2
x, y = data[i]
x = np.array(x[:-1])
if "VolFirstP" in k:
x = x + 1.0
y = np.cumsum(y) * 1.0 / np.sum(y)
ax[j].plot(x, y, marker=markers[i/2], color=colors[i/2], label=labels[i/2], lw=2)
ax[0].set_ylabel(y_label)
ax[0].set_xlabel(x_labels[0])
ax[1].set_xscale("log")
ax[1].set_xlabel(x_labels[1])
lgd = fig.legend(*ax[0].get_legend_handles_labels(),
loc = 'upper center',bbox_to_anchor=(0.5, 1.2),
title = "Type of Novelty Score",
ncol=2, frameon=True, fancybox=True)
plt.savefig("%s/ScoreDistribution.pdf" % PLOT_DIR, bbox_inches='tight', bbox_extra_artists=[lgd])
# Growth data
score_types = ["acc_pos_vel_min", "acc_neg_vel_max"]
bins = np.arange(0,2.01,0.01).tolist()
data_acc_growth = df[(df["Year"] >= 1985) & (~df["acc_pos_vel_min"].isNull())].rdd.map(lambda x: x["acc_pos_vel_min"]).histogram(bins)
data_dec_growth = df[(df["Year"] >= 1985) & (df["acc_pos_vel_min"].isNull())].rdd.map(lambda x: x["acc_neg_vel_max"]).histogram(bins)
data = []
for i, k in enumerate(score_types):
print "Processing %s" % k
j = i % 2
x, y = df[(df["Year"] >= 1985)].rdd.map(lambda x: x[k]).histogram(bins[j])
data.append((x,y))
df_mesh = pd.read_csv("../data/MeSHProfiles.txt", sep="\t")
df_pmid = pd.read_csv("../data/PMID_PER_YEAR.2015.txt", sep="\t")
df_pmid["norm"] = df_pmid["TotalPMID"] / df_pmid["TotalPMID"].mean()
mterm = "Neoplasms"
plt.clf()
plt.close("all")
fig, ax = plt.subplots(4,1,figsize=(5,5), sharex=True)
for mterm in df_mesh.MeshTerm.unique():
print "Plotting %s" % mterm
for i, k in enumerate(["VolFirstP", "PredVal", "Velocity", "Acceleration"]):
x, y = df_mesh[df_mesh["MeshTerm"] == mterm].Year.values, df_mesh[df_mesh["MeshTerm"] == mterm][k].values
if k == "Velocity":
y = y / y.max()
elif k == "Acceleration":
y = y / (y.max() - y.min())
ax[i].plot(x,y, label=mterm)
ax[0].set_ylim([1,1e6])
ax[1].set_ylim([1,1e6])
ax[3].set_xlim([1920,2010])
ax[0].set_yscale("log")
ax[1].set_yscale("log")
plt.savefig("../plots/ALLMeshProfile.pdf", bbox_inches="tight")