-
Notifications
You must be signed in to change notification settings - Fork 5
/
nas_algorithms.py
450 lines (369 loc) · 16.7 KB
/
nas_algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import itertools
import os
import pickle
import sys
import copy
import numpy as np
import tensorflow as tf
from argparse import Namespace
from data import Data
from acquisition_functions import acq_fn
from meta_neural_net import MetaNeuralnet
from bo.bo.probo import ProBO
# default parameters for the NAS algorithms
DEFAULT_NUM_INIT = 10
DEFAULT_K = 10
DEFAULT_TOTAL_QUERIES = 150
DEFAULT_LOSS = 'val_loss'
def run_nas_algorithm(algo_params, search_space, mp):
# run nas algorithm
ps = copy.deepcopy(algo_params)
algo_name = ps.pop('algo_name')
if algo_name == 'random':
data = random_search(search_space, **ps)
elif algo_name == 'evolution':
data = evolution_search(search_space, **ps)
elif algo_name == 'bananas':
data = bananas(search_space, mp, **ps)
elif algo_name == 'gp_bayesopt':
data = gp_bayesopt_search(search_space, **ps)
elif algo_name == 'dngo':
data = dngo_search(search_space, **ps)
elif algo_name == 'local_search':
data = local_search(search_space, **ps)
else:
print('invalid algorithm name')
sys.exit()
if 'k' not in ps:
ps['k'] = DEFAULT_K
if 'total_queries' not in ps:
ps['total_queries'] = DEFAULT_TOTAL_QUERIES
if 'loss' not in ps:
ps['loss'] = DEFAULT_LOSS
return compute_best_test_losses(data, ps['k'], ps['total_queries'], ps['loss']), data
def compute_best_test_losses(data, k, total_queries, loss):
"""
Given full data from a completed nas algorithm,
output the test error of the arch with the best val error
after every multiple of k
"""
results = []
for query in range(k, total_queries + k, k):
best_arch = sorted(data[:query], key=lambda i:i[loss])[0]
test_error = best_arch['test_loss']
results.append((query, test_error))
return results
def random_search(search_space,
total_queries=DEFAULT_TOTAL_QUERIES,
loss=DEFAULT_LOSS,
random_encoding='adj',
cutoff=0,
deterministic=True,
verbose=1):
"""
random search
"""
data = search_space.generate_random_dataset(num=total_queries,
random_encoding=random_encoding,
cutoff=cutoff,
deterministic_loss=deterministic)
if verbose:
top_5_loss = sorted([d[loss] for d in data])[:min(5, len(data))]
print('random, query {}, top 5 losses {}'.format(total_queries, top_5_loss))
return data
def evolution_search(search_space,
total_queries=DEFAULT_TOTAL_QUERIES,
num_init=DEFAULT_NUM_INIT,
k=DEFAULT_K,
loss=DEFAULT_LOSS,
population_size=30,
tournament_size=10,
mutation_rate=1.0,
mutate_encoding='adj',
cutoff=0,
random_encoding='adj',
deterministic=True,
regularize=True,
verbose=1):
"""
regularized evolution
"""
data = search_space.generate_random_dataset(num=num_init,
random_encoding=random_encoding,
deterministic_loss=deterministic)
losses = [d[loss] for d in data]
query = num_init
population = [i for i in range(min(num_init, population_size))]
while query <= total_queries:
# evolve the population by mutating the best architecture
# from a random subset of the population
sample = np.random.choice(population, tournament_size)
best_index = sorted([(i, losses[i]) for i in sample], key=lambda i:i[1])[0][0]
mutated = search_space.mutate_arch(data[best_index]['spec'],
mutation_rate=mutation_rate,
mutate_encoding=mutate_encoding,
cutoff=cutoff)
arch_dict = search_space.query_arch(mutated, deterministic=deterministic)
data.append(arch_dict)
losses.append(arch_dict[loss])
population.append(len(data) - 1)
# kill the oldest (or worst) from the population
if len(population) >= population_size:
if regularize:
oldest_index = sorted([i for i in population])[0]
population.remove(oldest_index)
else:
worst_index = sorted([(i, losses[i]) for i in population], key=lambda i:i[1])[-1][0]
population.remove(worst_index)
if verbose and (query % k == 0):
top_5_loss = sorted([d[loss] for d in data])[:min(5, len(data))]
print('evolution, query {}, top 5 losses {}'.format(query, top_5_loss))
query += 1
return data
def bananas(search_space,
metann_params,
num_init=DEFAULT_NUM_INIT,
k=DEFAULT_K,
loss=DEFAULT_LOSS,
total_queries=DEFAULT_TOTAL_QUERIES,
num_ensemble=5,
acq_opt_type='mutation',
num_arches_to_mutate=1,
explore_type='its',
predictor_encoding='trunc_path',
cutoff=0,
mutate_encoding='adj',
random_encoding='adj',
deterministic=True,
verbose=1):
"""
Bayesian optimization with a neural network model
"""
data = search_space.generate_random_dataset(num=num_init,
predictor_encoding=predictor_encoding,
random_encoding=random_encoding,
deterministic_loss=deterministic,
cutoff=cutoff)
query = num_init + k
while query <= total_queries:
xtrain = np.array([d['encoding'] for d in data])
ytrain = np.array([d[loss] for d in data])
if verbose and query == num_init + k:
print('xtrain shape', xtrain.shape)
print('ytrain shape', ytrain.shape)
# get a set of candidate architectures
candidates = search_space.get_candidates(data,
acq_opt_type=acq_opt_type,
predictor_encoding=predictor_encoding,
mutate_encoding=mutate_encoding,
num_arches_to_mutate=num_arches_to_mutate,
loss=loss,
deterministic_loss=deterministic,
cutoff=cutoff)
xcandidates = np.array([c['encoding'] for c in candidates])
candidate_predictions = []
# train an ensemble of neural networks
train_error = 0
for _ in range(num_ensemble):
meta_neuralnet = MetaNeuralnet()
train_error += meta_neuralnet.fit(xtrain, ytrain, **metann_params)
# predict the validation loss of the candidate architectures
candidate_predictions.append(np.squeeze(meta_neuralnet.predict(xcandidates)))
tf.reset_default_graph()
tf.keras.backend.clear_session()
train_error /= num_ensemble
if verbose:
print('query {}, Meta neural net train error: {}'.format(query, train_error))
# compute the acquisition function for all the candidate architectures
candidate_indices = acq_fn(candidate_predictions, explore_type)
# add the k arches with the minimum acquisition function values
for i in candidate_indices[:k]:
arch_dict = search_space.query_arch(candidates[i]['spec'],
predictor_encoding=predictor_encoding,
deterministic=deterministic,
cutoff=cutoff)
data.append(arch_dict)
if verbose:
top_5_loss = sorted([(d[loss], d['epochs']) for d in data], key=lambda d: d[0])[:min(5, len(data))]
print('bananas, query {}, top 5 losses (loss, test, epoch): {}'.format(query, top_5_loss))
# we just finished performing k queries
query += k
return data
def local_search(search_space,
num_init=DEFAULT_NUM_INIT,
k=DEFAULT_K,
loss=DEFAULT_LOSS,
random_encoding='adj',
mutate_encoding='adj',
query_full_nbhd=False,
stop_at_minimum=True,
total_queries=DEFAULT_TOTAL_QUERIES,
deterministic=True,
verbose=1):
"""
local search
"""
query_dict = {}
iter_dict = {}
data = []
query = 0
while True:
# loop over full runs of local search until queries run out
arch_dicts = []
while len(arch_dicts) < num_init:
arch_dict = search_space.query_arch(random_encoding=random_encoding,
deterministic=deterministic)
if search_space.get_hash(arch_dict['spec']) not in query_dict:
query_dict[search_space.get_hash(arch_dict['spec'])] = 1
data.append(arch_dict)
arch_dicts.append(arch_dict)
query += 1
if query >= total_queries:
return data
sorted_arches = sorted([(arch, arch[loss]) for arch in arch_dicts], key=lambda i:i[1])
arch_dict = sorted_arches[0][0]
while True:
# loop over iterations of local search until we hit a local minimum
if verbose:
print('starting iteration, query', query)
iter_dict[search_space.get_hash(arch_dict['spec'])] = 1
nbhd = search_space.get_nbhd(arch_dict['spec'], mutate_encoding=mutate_encoding)
improvement = False
nbhd_dicts = []
for nbr in nbhd:
if search_space.get_hash(nbr) not in query_dict:
query_dict[search_space.get_hash(nbr)] = 1
nbr_dict = search_space.query_arch(nbr, deterministic=deterministic)
data.append(nbr_dict)
nbhd_dicts.append(nbr_dict)
query += 1
if query >= total_queries:
return data
if nbr_dict[loss] < arch_dict[loss]:
improvement = True
if not query_full_nbhd:
arch_dict = nbr_dict
break
if not stop_at_minimum:
sorted_data = sorted([(arch, arch[loss]) for arch in data], key=lambda i:i[1])
index = 0
while search_space.get_hash(sorted_data[index][0]['spec']) in iter_dict:
index += 1
arch_dict = sorted_data[index][0]
elif not improvement:
break
else:
sorted_nbhd = sorted([(nbr, nbr[loss]) for nbr in nbhd_dicts], key=lambda i:i[1])
arch_dict = sorted_nbhd[0][0]
if verbose:
top_5_loss = sorted([d[loss] for d in data])[:min(5, len(data))]
print('local_search, query {}, top 5 losses {}'.format(query, top_5_loss))
def gp_bayesopt_search(search_space,
num_init=DEFAULT_NUM_INIT,
k=DEFAULT_K,
total_queries=DEFAULT_TOTAL_QUERIES,
loss=DEFAULT_LOSS,
distance='adj',
random_encoding='adj',
cutoff=0,
deterministic=True,
tmpdir='./temp',
max_iter=200,
mode='single_process',
nppred=1000):
"""
Bayesian optimization with a GP prior
"""
# set up the path for auxiliary pickle files
if not os.path.exists(tmpdir):
os.mkdir(tmpdir)
aux_file_path = os.path.join(tmpdir, 'aux.pkl')
num_iterations = total_queries - num_init
# black-box function that bayesopt will optimize
def fn(arch):
return search_space.query_arch(arch, deterministic=deterministic)[loss]
# set all the parameters for the various BayesOpt classes
fhp = Namespace(fhstr='object', namestr='train')
domp = Namespace(dom_str='list', set_domain_list_auto=True,
aux_file_path=aux_file_path,
distance=distance)
modelp = Namespace(kernp=Namespace(ls=3., alpha=1.5, sigma=1e-5),
infp=Namespace(niter=num_iterations, nwarmup=500),
distance=distance, search_space=search_space.get_type())
amp = Namespace(am_str='mygpdistmat_ucb', nppred=nppred, modelp=modelp)
optp = Namespace(opt_str='rand', max_iter=max_iter)
makerp = Namespace(domp=domp, amp=amp, optp=optp)
probop = Namespace(niter=num_iterations, fhp=fhp,
makerp=makerp, tmpdir=tmpdir, mode=mode)
data = Namespace()
# Set up initial data
init_data = search_space.generate_random_dataset(num=num_init,
random_encoding=random_encoding,
deterministic_loss=deterministic)
data.X = [d['spec'] for d in init_data]
data.y = np.array([[d[loss]] for d in init_data])
# initialize aux file
pairs = [(data.X[i], data.y[i]) for i in range(len(data.y))]
pairs.sort(key=lambda x: x[1])
with open(aux_file_path, 'wb') as f:
pickle.dump(pairs, f)
# run Bayesian Optimization
bo = ProBO(fn, search_space, aux_file_path, data, probop, True)
bo.run_bo()
# get the validation and test loss for all architectures chosen by BayesOpt
results = []
for arch in data.X:
archtuple = search_space.query_arch(arch)
results.append(archtuple)
return results
def dngo_search(search_space,
num_init=DEFAULT_NUM_INIT,
k=DEFAULT_K,
loss=DEFAULT_LOSS,
total_queries=DEFAULT_TOTAL_QUERIES,
predictor_encoding='path',
cutoff=0,
acq_opt_type='mutation',
explore_type='ucb',
deterministic=True,
verbose=True):
import torch
from pybnn import DNGO
from pybnn.util.normalization import zero_mean_unit_var_normalization, zero_mean_unit_var_denormalization
def fn(arch):
return search_space.query_arch(arch, deterministic=deterministic)[loss]
# set up initial data
data = search_space.generate_random_dataset(num=num_init,
predictor_encoding=predictor_encoding,
cutoff=cutoff,
deterministic_loss=deterministic)
query = num_init + k
while query <= total_queries:
# set up data
x = np.array([d['encoding'] for d in data])
y = np.array([d[loss] for d in data])
# get a set of candidate architectures
candidates = search_space.get_candidates(data,
acq_opt_type=acq_opt_type,
predictor_encoding=predictor_encoding,
cutoff=cutoff,
deterministic_loss=deterministic)
xcandidates = np.array([d['encoding'] for d in candidates])
# train the model
model = DNGO(do_mcmc=False)
model.train(x, y, do_optimize=True)
predictions = model.predict(xcandidates)
candidate_indices = acq_fn(np.array(predictions), explore_type)
# add the k arches with the minimum acquisition function values
for i in candidate_indices[:k]:
arch_dict = search_space.query_arch(candidates[i]['spec'],
epochs=0,
predictor_encoding=predictor_encoding,
cutoff=cutoff,
deterministic=deterministic)
data.append(arch_dict)
if verbose:
top_5_loss = sorted([(d[loss], d['epochs']) for d in data], key=lambda d: d[0])[:min(5, len(data))]
print('dngo, query {}, top 5 val losses (val, test, epoch): {}'.format(query, top_5_loss))
query += k
return data