forked from statsmodels/statsmodels
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathREADME_l1.txt
40 lines (31 loc) · 1.25 KB
/
README_l1.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
What the l1 addition is
=======================
A slight modification that allows l1 regularized LikelihoodModel.
Regularization is handled by a fit_regularized method.
Main Files
==========
l1_demo/demo.py
$ python demo.py --get_l1_slsqp_results logit
does a quick demo of the regularization using logistic regression.
l1_demo/sklearn_compare.py
$ python sklearn_compare.py
Plots a comparison of regularization paths. Modify the source to use
different datasets.
statsmodels/base/l1_cvxopt.py
fit_l1_cvxopt_cp()
Fit likelihood model using l1 regularization. Use the CVXOPT package.
Lots of small functions supporting fit_l1_cvxopt_cp
statsmodels/base/l1_slsqp.py
fit_l1_slsqp()
Fit likelihood model using l1 regularization. Use scipy.optimize
Lots of small functions supporting fit_l1_slsqp
statsmodels/base/l1_solvers_common.py
Common methods used by l1 solvers
statsmodels/base/model.py
Likelihoodmodel.fit()
3 lines modified to allow for importing and calling of l1 fitting functions
statsmodels/discrete/discrete_model.py
L1MultinomialResults class
Child of MultinomialResults
MultinomialModel.fit()
3 lines re-directing l1 fit results to the L1MultinomialResults class