-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathInference.py
80 lines (71 loc) · 3.83 KB
/
Inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import scipy.io
import numpy as np
import cv2
import glob
import os
from skimage import io
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import numpy as np
import keras
import segmentation_models as sm
save_dir = "results/sample_images/"
dataset_name = "cpm15"
dataset_dir = "dataset/cpm15"
prepared_dataset_dir = "prepared_dataset"
images_list = glob.glob(os.path.join(dataset_dir,prepared_dataset_dir,"train","images")+"/*.png")[0]
image = img_to_array(load_img(images_list, color_mode='rgb'))
mask = img_to_array(load_img(os.path.join(dataset_dir,prepared_dataset_dir,"train","masks")+"/"+os.path.basename(images_list), color_mode='grayscale'))
model = sm.Unet('efficientnetb0', classes=1, activation='sigmoid')
model = keras.models.load_model("results/weights/cpm15_Best.h5", compile=False)
image = image.reshape(1,256,256,3)
pred = model.predict(image/255.0)
pred = pred.reshape(256,256,1)
image = image.reshape(256,256,3)
io.imsave(os.path.join(save_dir, dataset_name + ".png"), image)
io.imsave(os.path.join(save_dir, dataset_name + "_mask.png"), mask*255.0)
io.imsave(os.path.join(save_dir, dataset_name + "_pred.png"), pred*255.0)
dataset_name = "cpm17"
dataset_dir = "dataset/cpm17"
prepared_dataset_dir = "prepared_dataset"
images_list = glob.glob(os.path.join(dataset_dir,prepared_dataset_dir,"train","images")+"/*.png")[0]
image = img_to_array(load_img(images_list, color_mode='rgb'))
mask = img_to_array(load_img(os.path.join(dataset_dir,prepared_dataset_dir,"train","masks")+"/"+os.path.basename(images_list), color_mode='grayscale'))
model = sm.Unet('efficientnetb0', classes=1, activation='sigmoid')
model = keras.models.load_model("results/weights/cpm17_Best.h5", compile=False)
image = image.reshape(1,256,256,3)
pred = model.predict(image/255.0)
pred = pred.reshape(256,256,1)
image = image.reshape(256,256,3)
io.imsave(os.path.join(save_dir, dataset_name + ".png"), image)
io.imsave(os.path.join(save_dir, dataset_name + "_mask.png"), mask*255.0)
io.imsave(os.path.join(save_dir, dataset_name + "_pred.png"), pred*255.0)
dataset_name = "consep"
dataset_dir = "dataset/consep"
prepared_dataset_dir = "prepared_dataset"
images_list = glob.glob(os.path.join(dataset_dir,prepared_dataset_dir,"train","images")+"/*.png")[0]
image = img_to_array(load_img(images_list, color_mode='rgb'))
mask = img_to_array(load_img(os.path.join(dataset_dir,prepared_dataset_dir,"train","masks")+"/"+os.path.basename(images_list), color_mode='grayscale'))
model = sm.Unet('efficientnetb0', classes=1, activation='sigmoid')
model = keras.models.load_model("results/weights/consep_Best.h5", compile=False)
image = image.reshape(1,256,256,3)
pred = model.predict(image/255.0)
pred = pred.reshape(256,256,1)
image = image.reshape(256,256,3)
io.imsave(os.path.join(save_dir, dataset_name + ".png"), image)
io.imsave(os.path.join(save_dir, dataset_name + "_mask.png"), mask*255.0)
io.imsave(os.path.join(save_dir, dataset_name + "_pred.png"), pred*255.0)
dataset_name = "nucleiseg"
dataset_dir = "dataset/nucleiseg"
prepared_dataset_dir = "prepared_dataset"
images_list = glob.glob(os.path.join(dataset_dir,prepared_dataset_dir,"train","images")+"/*.png")[200]
image = img_to_array(load_img(images_list, color_mode='rgb'))
mask = img_to_array(load_img(os.path.join(dataset_dir,prepared_dataset_dir,"train","masks")+"/"+os.path.basename(images_list), color_mode='grayscale'))
model = sm.Unet('efficientnetb0', classes=1, activation='sigmoid')
model = keras.models.load_model("results/weights/nucleiseg_Best.h5", compile=False)
image = image.reshape(1,256,256,3)
pred = model.predict(image/255.0)
pred = pred.reshape(256,256,1)
image = image.reshape(256,256,3)
io.imsave(os.path.join(save_dir, dataset_name + ".png"), image)
io.imsave(os.path.join(save_dir, dataset_name + "_mask.png"), mask*255.0)
io.imsave(os.path.join(save_dir, dataset_name + "_pred.png"), pred*255.0)