-
Notifications
You must be signed in to change notification settings - Fork 0
/
openAIgym.py
98 lines (75 loc) · 1.95 KB
/
openAIgym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gym
import numpy as np
import random
from IPython.display import clear_output
from time import sleep
alpha = 0.1
gamma = 0.6
epsilon = 0.1
all_epochs = []
all_penalties = []
def print_frames(frames):
for i, frame in enumerate(frames):
clear_output(wait=True)
print(frame['frame'].getvalue())
print(f"Timestep: {i + 1}")
print(f"State: {frame['state']}")
print(f"Action: {frame['action']}")
print(f"Reward: {frame['reward']}")
sleep(.1)
def TrainTheModel(env):
alpha = 0.1
gamma = 0.6
epsilon = 0.1
q_table = np.zeros([env.observation_space.n, env.action_space.n])
all_epochs = []
all_penalties = []
for i in range(1, 100001):
state = env.reset()
epochs, penalties, reward, = 0, 0, 0
done = False
while not done:
if random.uniform(0, 1) < epsilon:
action = env.action_space.sample()
else:
action = np.argmax(q_table[state])
next_state, reward, done, info = env.step(action)
old_value = q_table[state, action]
next_max = np.max(q_table[next_state])
new_value = (1 - alpha) * old_value + alpha * (reward + gamma * next_max)
q_table[state, action] = new_value
if reward == -10:
penalties += 1
state = next_state
epochs += 1
if i % 100 == 0:
clear_output(wait=True)
print(f"Episode: {i}")
print("Training finished.\n")
return q_table
def testTheModel(env, q_table):
state = env.reset()
penalties, reward, total_reward = 0, 0, 0
frames = []
done = False
while not done:
action = np.argmax(q_table[state])
state, reward, done, info = env.step(action)
if reward == -10:
penalties += 1
total_reward += reward
frames.append({
'frame': env.render(mode='ansi'),
'state': state,
'action': action,
'reward': reward
}
)
print(f"timesteps: {penalties}")
print(f"total reward: {total_reward}")
print(f"penalties: {penalties}")
print_frames(frames)
def main():
env = gym.make("Taxi-v2").env
q_table = TrainTheModel(env)
testTheModel(env, q_table)