-
Notifications
You must be signed in to change notification settings - Fork 35
/
.nengobones.yml
92 lines (80 loc) · 2.12 KB
/
.nengobones.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
project_name: KerasLMU
pkg_name: keras_lmu
repo_name: nengo/keras-lmu
description: Keras implementation of Legendre Memory Units
license: abr-free
main_branch: main
copyright_start: 2019
license_rst: {}
contributing_rst: {}
contributors_rst: {}
manifest_in: {}
setup_py:
install_req:
- anyio<4 # not compatible with older tensorflow versions
- packaging>=20.9
- scipy>=1.0.0
- tensorflow>=2.6.0
tests_req:
- pytest>=6.1.0
- pytest-rng>=1.0.0
docs_req:
- matplotlib>=3.8.4
- jupyter>=1.0.0
- seaborn>=0.9.0
- sphinx>=1.8
- nbsphinx>=0.3.5
- nengo_sphinx_theme>=1.2.0
- numpydoc>=0.6
classifiers:
- "Development Status :: 3 - Alpha"
- "Intended Audience :: Science/Research"
- "Operating System :: OS Independent"
- "Programming Language :: Python "
- "Programming Language :: Python :: 3.8"
- "Programming Language :: Python :: 3.9"
- "Programming Language :: Python :: 3.10"
- "Programming Language :: Python :: 3.11"
- "Topic :: Scientific/Engineering "
- "Topic :: Scientific/Engineering :: Artificial Intelligence"
setup_cfg: {}
docs_conf_py:
intersphinx_mapping:
scipy: "https://docs.scipy.org/doc/scipy/reference"
html_redirects:
getting_started.html: getting-started.html
autoautosummary_change_modules:
keras_lmu:
- keras_lmu.layers.LMUCell
- keras_lmu.layers.LMU
- keras_lmu.layers.LMUFFT
extensions:
- nengo_sphinx_theme.ext.autoautosummary
doctest_setup:
- import numpy as np
- import tensorflow as tf
sphinx_options:
autodoc_inherit_docstrings: False
ci_scripts:
- template: static
- template: docs
pre_commands:
# We run this ahead of time, otherwise the download progress bar causes
# problems in the notebook rendering
- python -c "import keras; keras.datasets.mnist.load_data()"
- template: examples
- template: test
coverage: true
pip_install:
- $TF_VERSION
- $NUMPY_VERSION
- template: deploy
wheel: true
pre_commit_config_yaml: {}
pyproject_toml: {}
version_py:
type: semver
major: 0
minor: 8
patch: 0
release: false