-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain_transductive.py
159 lines (123 loc) · 6.24 KB
/
train_transductive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import copy
import logging
import os
from absl import app
from absl import flags
import torch
from torch.nn.functional import cosine_similarity
from torch.optim import AdamW
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from bgrl import *
log = logging.getLogger(__name__)
FLAGS = flags.FLAGS
flags.DEFINE_integer('model_seed', None, 'Random seed used for model initialization and training.')
flags.DEFINE_integer('data_seed', 1, 'Random seed used to generate train/val/test split.')
flags.DEFINE_integer('num_eval_splits', 3, 'Number of different train/test splits the model will be evaluated over.')
# Dataset.
flags.DEFINE_enum('dataset', 'coauthor-cs',
['amazon-computers', 'amazon-photos', 'coauthor-cs', 'coauthor-physics', 'wiki-cs'],
'Which graph dataset to use.')
flags.DEFINE_string('dataset_dir', './data', 'Where the dataset resides.')
# Architecture.
flags.DEFINE_multi_integer('graph_encoder_layer', None, 'Conv layer sizes.')
flags.DEFINE_integer('predictor_hidden_size', 512, 'Hidden size of projector.')
# Training hyperparameters.
flags.DEFINE_integer('epochs', 10000, 'The number of training epochs.')
flags.DEFINE_float('lr', 1e-5, 'The learning rate for model training.')
flags.DEFINE_float('weight_decay', 1e-5, 'The value of the weight decay for training.')
flags.DEFINE_float('mm', 0.99, 'The momentum for moving average.')
flags.DEFINE_integer('lr_warmup_epochs', 1000, 'Warmup period for learning rate.')
# Augmentations.
flags.DEFINE_float('drop_edge_p_1', 0., 'Probability of edge dropout 1.')
flags.DEFINE_float('drop_feat_p_1', 0., 'Probability of node feature dropout 1.')
flags.DEFINE_float('drop_edge_p_2', 0., 'Probability of edge dropout 2.')
flags.DEFINE_float('drop_feat_p_2', 0., 'Probability of node feature dropout 2.')
# Logging and checkpoint.
flags.DEFINE_string('logdir', None, 'Where the checkpoint and logs are stored.')
flags.DEFINE_integer('log_steps', 10, 'Log information at every log_steps.')
# Evaluation
flags.DEFINE_integer('eval_epochs', 5, 'Evaluate every eval_epochs.')
def main(argv):
# use CUDA_VISIBLE_DEVICES to select gpu
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
log.info('Using {} for training.'.format(device))
# set random seed
if FLAGS.model_seed is not None:
log.info('Random seed set to {}.'.format(FLAGS.model_seed))
set_random_seeds(random_seed=FLAGS.model_seed)
# create log directory
os.makedirs(FLAGS.logdir, exist_ok=True)
with open(os.path.join(FLAGS.logdir, 'config.cfg'), "w") as file:
file.write(FLAGS.flags_into_string()) # save config file
# load data
if FLAGS.dataset != 'wiki-cs':
dataset = get_dataset(FLAGS.dataset_dir, FLAGS.dataset)
num_eval_splits = FLAGS.num_eval_splits
else:
dataset, train_masks, val_masks, test_masks = get_wiki_cs(FLAGS.dataset_dir)
num_eval_splits = train_masks.shape[1]
data = dataset[0] # all dataset include one graph
log.info('Dataset {}, {}.'.format(dataset.__class__.__name__, data))
data = data.to(device) # permanently move in gpy memory
# prepare transforms
transform_1 = get_graph_drop_transform(drop_edge_p=FLAGS.drop_edge_p_1, drop_feat_p=FLAGS.drop_feat_p_1)
transform_2 = get_graph_drop_transform(drop_edge_p=FLAGS.drop_edge_p_2, drop_feat_p=FLAGS.drop_feat_p_2)
# build networks
input_size, representation_size = data.x.size(1), FLAGS.graph_encoder_layer[-1]
encoder = GCN([input_size] + FLAGS.graph_encoder_layer, batchnorm=True) # 512, 256, 128
predictor = MLP_Predictor(representation_size, representation_size, hidden_size=FLAGS.predictor_hidden_size)
model = BGRL(encoder, predictor).to(device)
# optimizer
optimizer = AdamW(model.trainable_parameters(), lr=FLAGS.lr, weight_decay=FLAGS.weight_decay)
# scheduler
lr_scheduler = CosineDecayScheduler(FLAGS.lr, FLAGS.lr_warmup_epochs, FLAGS.epochs)
mm_scheduler = CosineDecayScheduler(1 - FLAGS.mm, 0, FLAGS.epochs)
# setup tensorboard and make custom layout
writer = SummaryWriter(FLAGS.logdir)
layout = {'accuracy': {'accuracy/test': ['Multiline', [f'accuracy/test_{i}' for i in range(num_eval_splits)]]}}
writer.add_custom_scalars(layout)
def train(step):
model.train()
# update learning rate
lr = lr_scheduler.get(step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# update momentum
mm = 1 - mm_scheduler.get(step)
# forward
optimizer.zero_grad()
x1, x2 = transform_1(data), transform_2(data)
q1, y2 = model(x1, x2)
q2, y1 = model(x2, x1)
loss = 2 - cosine_similarity(q1, y2.detach(), dim=-1).mean() - cosine_similarity(q2, y1.detach(), dim=-1).mean()
loss.backward()
# update online network
optimizer.step()
# update target network
model.update_target_network(mm)
# log scalars
writer.add_scalar('params/lr', lr, step)
writer.add_scalar('params/mm', mm, step)
writer.add_scalar('train/loss', loss, step)
def eval(epoch):
# make temporary copy of encoder
tmp_encoder = copy.deepcopy(model.online_encoder).eval()
representations, labels = compute_representations(tmp_encoder, dataset, device)
if FLAGS.dataset != 'wiki-cs':
scores = fit_logistic_regression(representations.cpu().numpy(), labels.cpu().numpy(),
data_random_seed=FLAGS.data_seed, repeat=FLAGS.num_eval_splits)
else:
scores = fit_logistic_regression_preset_splits(representations.cpu().numpy(), labels.cpu().numpy(),
train_masks, val_masks, test_masks)
for i, score in enumerate(scores):
writer.add_scalar(f'accuracy/test_{i}', score, epoch)
for epoch in tqdm(range(1, FLAGS.epochs + 1)):
train(epoch-1)
if epoch % FLAGS.eval_epochs == 0:
eval(epoch)
# save encoder weights
torch.save({'model': model.online_encoder.state_dict()}, os.path.join(FLAGS.logdir, 'bgrl-wikics.pt'))
if __name__ == "__main__":
log.info('PyTorch version: %s' % torch.__version__)
app.run(main)