-
Notifications
You must be signed in to change notification settings - Fork 0
/
RandGraphGen.py
55 lines (48 loc) · 2.26 KB
/
RandGraphGen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from networkx import DiGraph
from networkx.generators.random_graphs import erdos_renyi_graph
from networkx.readwrite.edgelist import read_edgelist, write_edgelist
import logging
import numpy as np
import os
import pickle
import random
import sys
if __name__ == "__main__":
n = 100
p = 0.05
logging.basicConfig(level=logging.INFO)
logging.info('Creating graph...')
G = erdos_renyi_graph(n, p, directed=True)
numOfNodes = G.number_of_nodes()
numOfEdges = G.number_of_edges()
logging.info('\n...done. Created a directed Erdos-Renyi graph with %d nodes and %d edges' % (numOfNodes, numOfEdges))
degrees = dict(list(G.out_degree(G.nodes())))
descending_degrees = sorted(degrees.values(), reverse=True)
evens = set(descending_degrees[::2])
odds = set(descending_degrees[1::2])
# evens = evens.intersection(set(G.nodes()))
# odds = odds.intersection(set(G.nodes()))
target_partitions = {0: evens, 1: odds} # create partitions based on their position in the descending_degrees list
logging.info('\nCreating cascades...')
p1 = 0.1 # infection probability used in the independent cascade model
numberOfCascades = 10
graphs = []
for cascade in range(numberOfCascades):
newG = DiGraph()
newG.add_nodes_from(G.nodes())
choose = np.array([np.random.uniform(0, 1, G.number_of_edges()) < p1, ] * 2).transpose()
print(len(choose))
chosen_edges = np.extract(choose, G.edges())
print(len(chosen_edges))
chosen_edges = zip(chosen_edges[0::2], chosen_edges[1::2])
print(len(chosen_edges))
newG.add_edges_from(chosen_edges)
graphs.append(newG)
numOfNodes = graphs[cascade].number_of_nodes()
numOfInfEdges = graphs[cascade].number_of_edges()
logging.info('\nCreated cascade %d with %d nodes and %d edges.' % (cascade, numOfNodes, numOfInfEdges))
logging.info(']n...done. Created %d cascades with %s infection probability.' % (numberOfCascades, p1))
with open("datasets/ER_" + str(p).replace('.', '') + '_' + str(n) + "_" + str(numberOfCascades) + "cascades", "w") as f:
pickle.dump(graphs, f)
with open("datasets/ER_" + str(p).replace('.', '') + '_' + str(n) + "_partitions", "w") as f:
pickle.dump(target_partitions, f)