-
Notifications
You must be signed in to change notification settings - Fork 5
/
kslipCreepPowerLaw.f
184 lines (128 loc) · 5.04 KB
/
kslipCreepPowerLaw.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
C Christos Skamniotis
C University of Oxford
C December 2021
C
C Simplified power law slip rule and empirical creep law for tertiary creep:
subroutine kslipCreepPowerLaw(xNorm,xDir,tau,signtau,tauc,
+ dtime,nSys,iphase,CurrentTemperature,Lp,
+ tmat,gammaDot,cubicslip,creep,slipsysplasstran)
implicit none
! number of slip system
integer, intent(in):: nSys
! activation flag for cubic slip (additional 6 systems activated when loading is not along 001)
INTEGER,intent(in) :: cubicslip
! activation flag for tertiary creep
INTEGER,intent(in) :: creep
! accumulated plastic strain on each slip system, signed
real*8, intent(in) :: slipsysplasstran(nSys)
! phase
integer, intent(in):: iphase
! slip directions and normals
real*8, intent(in) :: xNorm(nSys,3), xDir(nSys,3)
! resolved shear stress and critical resolved shear stress
! and sign of the resolved shear stress
! tauc is positive by definition
real*8, intent(in) :: tau(nSys), tauc(nSys), signtau(nSys)
! time step
real*8, intent(in) :: dtime
! Temperature in Kelvin
real*8, intent(in) :: CurrentTemperature
! plastic velocity gradient
real*8, intent(out) :: Lp(3,3)
! and its derivative with respect to the stress
real*8, intent(out) :: tmat(6,6)
! plastic strain rate on each slip system
real*8, intent(out) :: gammaDot(nSys)
! Gas constant (J*mol/K)
real*8, parameter :: R = 8.314462
******************************************
** The following parameters must be set **
*** RATE DEPENDENT PLASTICITY (thermally activated glide)
! reference strain rate (1/s)
real*8, parameter :: ref_gammaDot = 7.071136E-05
! rate sensitivity multiplier (1/Kelvin)
real*8, parameter :: slopeM = -0.036273
! rate sensitivity constant (-/-)
real*8, parameter :: constantM = 65.33827694
*** TERTIARY CREEP (dislocation climb & damage)
! Initial creep rate constants
! Activation energy for creep (J/mol)
real*8, parameter :: Qo = 440.0e3
! reference rate (1/s)
real*8, parameter :: ao = 6.0e7
! stress multiplier (1/MPa)
real*8, parameter :: bo = 5.0e-2
! Climb/damage constants
! Activation energy for damage (J/mol)
real*8, parameter :: QD = 170.0e3
! reference rate (1/s)
real*8, parameter :: aD = 6.0e-1
! stress multiplier (1/MPa)
real*8, parameter :: bD = 3.5e-2
** End of parameters to set **
******************************************
! slip system index
integer :: i
! Schmid tensor and its transpose
real*8 :: SNij(3,3), NSij(3,3)
! Schmid tensor and its transpose in Voigt notation
real*8 :: sni(6), nsi(6)
! higher order Schmid tensor in Voigt notation
real*8 :: SNNS(6,6)
! temporary slip normal and slip direction
real*8 :: tempNorm(3), tempDir(3)
! temporary variable to calculate the Jacobian
real*8 :: result1
! Jacobian
real*8 :: result4(6,6)
! RSS/CRSS ratio
real*8 :: tau_ratio
! rate sensitivity
real*8 :: mpower
C
C *** CALCULATE LP AND THE DERIVATIVE OF PLASTIC STRAIN INCREMENT WITH
C RESPECT TO THE STRESS DEFINED AS tmat***
C
C
tmat = 0.0
Lp = 0.0
result4 = 0.0
mpower = slopeM * CurrentTemperature + constantM
! contribution to Lp of all slip systems
do i=1,nSys
tau_ratio=tau(i)/tauc(i)
if (tau_ratio > 0.0) then
! strain rate due to thermally activated glide (rate dependent plasticity)
gammaDot(i) = signtau(i)*ref_gammaDot*tau_ratio**mpower
! calculate derivative d ( gammaDot(i) ) / d ( tau(i) )
result1 = ref_gammaDot*mpower*(1/tauc(i))*(tau_ratio**(mpower-1))
! add tertiary creep rate
if (creep == 1 .and. tau_ratio > 0.05) then
gammaDot(i) = gammaDot(i) +
+ signtau(i)*ao*exp(bo*tau(i)-Qo/(R*CurrentTemperature)) +
+ signtau(i)*abs(slipsysplasstran(i))*aD*
+ exp(bD*tau(i)-QD/(R*CurrentTemperature))
result1 = result1 + ao*bo*
+ exp(bo*tau(i)-Qo/(R*CurrentTemperature)) +
+ abs(slipsysplasstran(i))*aD*bD*
+ exp(bD*tau(i)-QD/(R*CurrentTemperature))
end if
! calculate SNNS
tempNorm = xNorm(i,:)
tempDir = xDir(i,:)
SNij = spread(tempDir,2,3)*spread(tempNorm,1,3)
NSij = spread(tempNorm,2,3)*spread(tempDir,1,3)
call KGMATVEC6(SNij,sni)
call KGMATVEC6(NSij,nsi)
SNNS = spread(sni,2,6)*spread(nsi,1,6)
! contribution to Jacobian
result4 = result4 + dtime*result1*SNNS
! plastic velocity gradient contribution
Lp = Lp + gammaDot(i)*SNij
else
gammaDot(i) = 0.0
end if
end do
tmat = 0.5*(result4+transpose(result4))
return
end