-
Notifications
You must be signed in to change notification settings - Fork 5
/
kslipDoubleExponent.f
196 lines (134 loc) · 5.31 KB
/
kslipDoubleExponent.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
C Nicolo Grilli
C University of Bristol
C Christos Skamniotis
C University of Oxford
C 11 Novembre 2021
C
C Double exponent slip rule in:
C Zhengxuan Fan & Serge Kruch (2020) A comparison of different crystal
C plasticity finite-element models on the simulation of nickel alloys,
C Materials at High Temperatures, 37:5, 328-339, DOI: 10.1080/09603409.2020.1801951
C Equation in Table 1
subroutine kslipDoubleExponent(xNorm,xDir,tau,signtau,tauc,
+ burgerv,dtime,nSys,iphase,CurrentTemperature,Backstress,Lp,
+ tmat,gammaDot)
implicit none
! number of slip system
integer, intent(in):: nSys
! phase
integer, intent(in):: iphase
! slip directions and normals
real*8, intent(in) :: xNorm(nSys,3),xDir(nSys,3)
! resolved shear stress and critical resolved shear stress
! and sign of the resolved shear stress
! tauc is positive by definition
real*8, intent(in) :: tau(nSys), tauc(nSys), signtau(nSys)
! Burgers vectors
real*8, intent(in) :: burgerv(nSys)
! time step
real*8, intent(in) :: dtime
! Temperature
real*8, intent(in) :: CurrentTemperature
! Backstress state variable
real*8, intent(in) :: Backstress(nSys)
! plastic velocity gradient
real*8, intent(out) :: Lp(3,3)
! and its derivative with respect to the stress
real*8, intent(out) :: tmat(6,6)
! plastic strain rate on each slip system
real*8, intent(out) :: gammaDot(nSys)
******************************************
** The following parameters must be set **
! Free energy variation (J/mol)
real*8, parameter :: dF = 286000.0
! Boltzmann constant (J/K)
real*8, parameter :: kB = 1.38e-23
! reference strain rate (1/s)
real*8, parameter :: gammadot0 = 1.0e7
! ratio between shear modulus at CurrentTemperature
! and at 0K
real*8, parameter :: mu_over_mu0 = 103.5 / 134.0
! strain rate sensitivity exponents
real*8, parameter :: p = 0.59
real*8, parameter :: q = 1.8
! Peierls stress at 0K (MPa)
real*8, parameter :: tau0 = 342.0
** End of parameters to set **
******************************************
! slip system index
integer :: i
! Schmid tensor and its transpose
real*8 :: SNij(3,3), NSij(3,3)
! Schmid tensor and its transpose in Voigt notation
real*8 :: sni(6), nsi(6)
! higher order Schmid tensor in Voigt notation
real*8 :: SNNS(6,6)
! temporary slip normal and slip direction
real*8 :: tempNorm(3), tempDir(3)
! ratio between free energy jump and KB * T
real*8 :: dF_over_kBT
! argument of the exponential to calculate gammaDot
real*8 :: gammaDot_exp_arg
! effective stress for slip
real*8 :: tau_eff
! temporary variable to calculate the Jacobian
real*8 :: result1
! product between tauc and mu_over_mu0
real*8 :: tauc_mu_over_mu0
! product between tau0 and mu_over_mu0
real*8 :: tau0_mu_over_mu0 = mu_over_mu0 * tau0
! the variable elevated to power p (temporary variable)
real*8 :: powerp
! Jacobian
real*8 :: result4(6,6)
dF_over_kBT = dF / (kB * CurrentTemperature)
C
C *** CALCULATE LP AND THE DERIVATIVE OF PLASTIC STRAIN INCREMENT WITH
C RESPECT TO THE STRESS DEFINED AS tmat***
C
tmat = 0.0
Lp = 0.0
result4 = 0.0
! contribution to Lp of all slip systems
do i=1,nSys
tauc_mu_over_mu0 = mu_over_mu0 * tauc(i)
tau_eff = abs(tau(i) - Backstress(i)) - tauc_mu_over_mu0
if (tau_eff >= 0.0) then
gammaDot_exp_arg = tau_eff / tau0_mu_over_mu0 ! always positive
if (gammaDot_exp_arg >= 1.0) then ! avoid negative values before elevating to power q
gammaDot_exp_arg = 0.0
powerp = 0.0
else ! standard case
powerp = gammaDot_exp_arg**p
gammaDot_exp_arg = (1.0 - powerp)**q
end if
gammaDot(i) = gammadot0*exp(-dF_over_kBT*gammaDot_exp_arg)
if ((tau(i) - Backstress(i)) < 0.0) then ! sign is based on (tau(i) - Backstress(i))
gammaDot(i) = (-1.0) * gammaDot(i)
end if
tempNorm = xNorm(i,:)
tempDir = xDir(i,:)
SNij = spread(tempDir,2,3)*spread(tempNorm,1,3)
NSij = spread(tempNorm,2,3)*spread(tempDir,1,3)
call KGMATVEC6(SNij,sni)
call KGMATVEC6(NSij,nsi)
SNNS = spread(sni,2,6)*spread(nsi,1,6)
! calculate derivative d ( gammaDot(i) ) / d ( tau(i) )
result1 = abs(gammaDot(i))
result1 = result1 * dF_over_kBT
result1 = result1 * q
result1 = result1 * ((1.0 - powerp)**(q-1.0))
result1 = result1 * p
result1 = result1 / (tau0_mu_over_mu0**p)
result1 = result1 * ((tau_eff)**(p-1.0))
! contribution to Jacobian
result4 = result4 + dtime*result1*SNNS
! plastic velocity gradient contribution
Lp = Lp + gammaDot(i)*SNij
else
gammaDot(i) = 0.0
end if
end do
tmat = 0.5*(result4+transpose(result4))
return
end