Skip to content

Latest commit

 

History

History
283 lines (255 loc) · 17.6 KB

README.md

File metadata and controls

283 lines (255 loc) · 17.6 KB

tap-twitter-ads

This is a Singer tap that produces JSON-formatted data following the Singer spec.

This tap:

Twitter Ads Hierarchy and Terminology Twitter Ads Hierarchy

Authentication

Twitter Ads requires authentication headers using OAuth 1.0a with an access token obtained via 3-legged OAuth flow. The access token, once generated, is permanent, but request tokens are short-lived without a documented expiry. The process is described in Obtaining Ads Account Credential.

Quick Start

  1. Install

    Clone this repository, and then install using setup.py. We recommend using a virtualenv:

    > virtualenv -p python3 venv
    > source venv/bin/activate
    > python setup.py install
    OR
    > cd .../tap-twitter-ads
    > pip install .
  2. Dependent libraries The following dependent libraries were installed.

    > pip install singer-python
    > pip install singer-tools
    > pip install target-stitch
    > pip install twitter-ads (v7.0.0)
  3. Create your tap's config.json with the following parameters:

    • start_date: Absolute beginning date for bookmarked endpoints.
    • user_agent: Tap name and email address for API logging.
    • OAuth 1.0a credentials:
      • consumer_key
      • consumer_secret
      • access_token
      • access_token_secret
    • account_ids: Comma-delimited list of Twitter Ad Account IDs.
    • attribution_window: Number of days for latency look-back period to allow analytical reporting numbers to stabilize.
    • with_deleted: true or false; specifies whether to include logically deleted records in the results.
    • country_codes: Comma-delimited list of ISO 2-letter country codes for targeting and segmenttation.
    • reports: Object array of specified reports with name, entity, segment, and granularity.
    {
        "start_date": "2019-01-01T00:00:00Z",
        "user_agent": "tap-twitter-ads <api_user_email@your_company.com>",
        "consumer_key": "YOUR_TWITTER_ADS_CONSUMER_KEY",
        "consumer_secret": "YOUR_TWITTER_ADS_CONSUMER_SECRET",
        "access_token": "YOUR_TWITTER_ADS_ACCESS_TOKEN",
        "access_token_secret": "YOUR_TWITTER_ADS_ACCESS_TOKEN_SECRET",
        "account_ids": "id1, id2, id3",
        "attribution_window": "14",
        "with_deleted": "true",
        "country_codes": "US, CA, MX, DE",
        "reports": [
            {
            "name": "campaigns_genders_hourly_report",
            "enitity": "CAMPAIGN",
            "segment": "GENDER",
            "granularity": "HOUR"
            },
            {
            "name": "line_items_regions_daily_report",
            "enitity": "LINE_ITEM",
            "segment": "REGIONS",
            "granularity": "DAY"
            }
        ]
    }

    Optionally, also create a state.json file. currently_syncing is an optional attribute used for identifying the last object to be synced in case the job is interrupted mid-stream. The next run would begin where the last job left off. Each bookmarked endpoint that supports INCREMENTAL syncs will be listed with its max last processed record based on updated_at, created_at, or end_time (depending on the endpoint).

    {
        "currently_syncing": "creatives",
        "bookmarks": {
            "accounts": "2019-06-11T13:37:55Z",
            "account_media": "2019-06-19T19:48:42Z",
            "..."
        }
    }
  4. Run the Tap in Discovery Mode This creates a catalog.json for selecting objects/fields to integrate:

    > tap-twitter-ads --config config.json --discover > catalog.json

    See the Singer docs on discovery mode here.

  5. Run the Tap in Sync Mode (with catalog) and write out to state file

    For Sync mode:

    > tap-twitter-ads --config tap_config.json --catalog catalog.json > state.json
    > tail -1 state.json > state.json.tmp && mv state.json.tmp state.json

    To load to json files to verify outputs:

    > tap-twitter-ads --config tap_config.json --catalog catalog.json | target-json > state.json
    > tail -1 state.json > state.json.tmp && mv state.json.tmp state.json

    To pseudo-load to Stitch Import API with dry run:

    > tap-twitter-ads --config tap_config.json --catalog catalog.json | target-stitch --config target_config.json --dry-run > state.json
    > tail -1 state.json > state.json.tmp && mv state.json.tmp state.json
  6. Test the Tap

    While developing the twitter Ads tap, the following utilities were run in accordance with Singer.io best practices: Pylint to improve code quality:

    > pylint tap_twitter_ads -d missing-docstring -d logging-format-interpolation -d too-many-locals -d too-many-arguments

    Pylint test resulted in the following score:

    Your code has been rated at 9.72/10.

    To check the tap and verify working:

    > tap-twitter-ads --config tap_config.json --catalog catalog.json | singer-check-tap > state.json
    > tail -1 state.json > state.json.tmp && mv state.json.tmp state.json

    Check tap resulted in the following:

      The output is valid.
      It contained 872667 messages for 62 streams.
    
          63 schema messages
      872432 record messages
          172 state messages
    
      Details by stream:
      +--------------------------------------------+---------+---------+
      | stream                                     | records | schemas |
      +--------------------------------------------+---------+---------+
      | account_media                              | 0       | 1       |
      | accounts                                   | 1       | 1       |
      | accounts_conversion_tags_hourly_report     | 0       | 1       |
      | accounts_daily_report                      | 87      | 1       |
      | accounts_metros_hourly_report              | 226240  | 1       |
      | advertiser_business_categories             | 16      | 1       |
      | bidding_rules                              | 64      | 1       |
      | campaigns                                  | 2       | 1       |
      | campaigns_conversion_tags_daily_report     | 0       | 1       |
      | campaigns_daily_report                     | 10      | 1       |
      | campaigns_genders_hourly_report            | 504     | 1       |
      | cards_image_app_download                   | 0       | 1       |
      | cards_image_conversation                   | 0       | 1       |
      | cards_image_direct_message                 | 0       | 1       |
      | cards_poll                                 | 0       | 1       |
      | cards_video_app_download                   | 0       | 1       |
      | cards_video_conversation                   | 0       | 1       |
      | cards_video_direct_message                 | 0       | 1       |
      | cards_video_website                        | 0       | 1       |
      | cards_website                              | 0       | 1       |
      | content_categories                         | 392     | 1       |
      | funding_instruments                        | 1       | 1       |
      | funding_instruments_age_daily_report       | 175     | 1       |
      | funding_instruments_devices_hourly_report  | 15288   | 1       |
      | funding_instruments_hourly_report          | 84      | 1       |
      | iab_categories                             | 15      | 1       |
      | line_item_apps                             | 0       | 1       |
      | line_items                                 | 2       | 1       |
      | line_items_conversion_tags_hourly_report   | 0       | 1       |
      | line_items_daily_report                    | 10      | 1       |
      | line_items_platform_versions_hourly_report | 3108    | 1       |
      | line_items_platforms_hourly_report         | 588     | 1       |
      | line_items_regions_daily_report            | 630     | 1       |
      | media_creatives                            | 0       | 1       |
      | media_creatives_daily_report               | 0       | 1       |
      | organic_tweets_daily_report                | 82      | 2       |
      | organic_tweets_hourly_report               | 1344    | 1       |
      | preroll_call_to_actions                    | 0       | 1       |
      | promotable_users                           | 0       | 1       |
      | promoted_accounts                          | 0       | 1       |
      | promoted_accounts_daily_report             | 0       | 1       |
      | promoted_tweets                            | 2       | 1       |
      | promoted_tweets_daily_report               | 10      | 1       |
      | promoted_tweets_interests_daily_report     | 3210    | 1       |
      | promoted_tweets_keywords_hourly_report     | 420     | 1       |
      | promoted_tweets_languages_daily_report     | 205     | 1       |
      | scheduled_promoted_tweets                  | 0       | 1       |
      | tailored_audiences                         | 0       | 1       |
      | targeting_app_store_categories             | 84      | 1       |
      | targeting_conversations                    | 41136   | 1       |
      | targeting_criteria                         | 10      | 1       |
      | targeting_devices                          | 355     | 1       |
      | targeting_events                           | 355     | 1       |
      | targeting_interests                        | 361     | 1       |
      | targeting_languages                        | 21      | 1       |
      | targeting_locations                        | 56682   | 1       |
      | targeting_network_operators                | 161     | 1       |
      | targeting_platform_versions                | 38      | 1       |
      | targeting_platforms                        | 4       | 1       |
      | targeting_tv_markets                       | 39      | 1       |
      | targeting_tv_shows                         | 520694  | 1       |
      | tweets                                     | 2       | 1       |
      +--------------------------------------------+---------+---------+
    

Copyright © 2019 Stitch