rnoaa
is an R interface to many NOAA data sources. We don't cover all of them, but we include many commonly used sources, and add we are always adding new sources. We focus on easy to use interfaces for getting NOAA data, and giving back data in easy to use formats downstream. We currently don't do much in the way of plots or analysis.
- NOAA NCDC climate data:
- We are using the NOAA API version 2
- Docs for the NCDC API are at http://www.ncdc.noaa.gov/cdo-web/webservices/v2
- GHCN Daily data is available at http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/ via FTP and HTTP
- Severe weather data docs are at http://www.ncdc.noaa.gov/swdiws/
- Sea ice data
- NOAA buoy data
- ERDDAP data
- Now in package rerddap
- Tornadoes! Data from the NOAA Storm Prediction Center
- HOMR - Historical Observing Metadata Repository - from NOAA NCDC
- Storm data - from the International Best Track Archive for Climate Stewardship (IBTrACS)
- GHCND FTP data - NOAA NCDC API has some/all (not sure really) of this data, but FTP allows to get more data more quickly
- Global Ensemble Forecast System (GEFS) data
- Extended Reconstructed Sea Surface Temperature (ERSST) data
- Argo buoys - a global array of more than 3,000 free-drifting profiling floats that measures thetemperature and salinity of the upper 2000 m of the ocean
- NOAA CO-OPS - tides and currents data
There is a tutorial on the rOpenSci website, and there are many tutorials in the package itself, available in your R session, or on CRAN. The tutorials:
- NOAA Buoy vignette
- NOAA National Climatic Data Center (NCDC) vignette (examples)
- NOAA NCDC attributes vignette
- NOAA NCDC workflow vignette
- Sea ice vignette
- Severe Weather Data Inventory (SWDI) vignette
- Historical Observing Metadata Repository (HOMR) vignette
- Storms (IBTrACS) vignette
Functions to work with buoy data use netcdf files. You'll need the ncdf
package for those functions, and those only. ncdf
is in Suggests in this package, meaning you only need ncdf
if you are using the buoy functions. You'll get an informative error telling you to install ncdf
if you don't have it and you try to use the buoy functions. Installation of ncdf
should be straightforward on Mac and Windows, but on Linux you may have issues. See http://cran.r-project.org/web/packages/ncdf/INSTALL
There are many NOAA NCDC datasets. All data sources work, except NEXRAD2
and NEXRAD3
, for an unkown reason. This relates to ncdc_*()
functions only.
Dataset | Description | Start date | End date |
---|---|---|---|
ANNUAL | Annual Summaries | 1831-02-01 | 2013-11-01 |
GHCND | Daily Summaries | 1763-01-01 | 2014-03-15 |
GHCNDMS | Monthly Summaries | 1763-01-01 | 2014-01-01 |
NORMAL_ANN | Normals Annual/Seasonal | 2010-01-01 | 2010-01-01 |
NORMAL_DLY | Normals Daily | 2010-01-01 | 2010-12-31 |
NORMAL_HLY | Normals Hourly | 2010-01-01 | 2010-12-31 |
NORMAL_MLY | Normals Monthly | 2010-01-01 | 2010-12-01 |
PRECIP_15 | Precipitation 15 Minute | 1970-05-12 | 2013-03-01 |
PRECIP_HLY | Precipitation Hourly | 1900-01-01 | 2013-03-01 |
NEXRAD2 | Nexrad Level II | 1991-06-05 | 2014-03-14 |
NEXRAD3 | Nexrad Level III | 1994-05-20 | 2014-03-11 |
Each NOAA dataset has a different set of attributes that you can potentially get back in your search. See http://www.ncdc.noaa.gov/cdo-web/datasets for detailed info on each dataset. We provide some information on the attributes in this package; see the vignette for attributes to find out more
You'll need an API key to use the NOAA NCDC functions (those starting with ncdc*()
) in this package (essentially a password). Go to http://www.ncdc.noaa.gov/cdo-web/token to get one. You can't use this package without an API key.
Once you obtain a key, there are two ways to use it.
a) Pass it inline with each function call (somewhat cumbersome)
ncdc(datasetid = 'PRECIP_HLY', locationid = 'ZIP:28801', datatypeid = 'HPCP', limit = 5, token = "YOUR_TOKEN")
b) Alternatively, you might find it easier to set this as an option, either by adding this line to the top of a script or somewhere in your .rprofile
options(noaakey = "KEY_EMAILED_TO_YOU")
c) You can always store in permamently in your .Rprofile
file.
GDAL
You'll need GDAL installed first. You may want to use GDAL >= 0.9-1
since that version or later can read TopoJSON format files as well, which aren't required here, but may be useful. Install GDAL:
- OSX - From http://www.kyngchaos.com/software/frameworks
- Linux - run
sudo apt-get install gdal-bin
reference - Windows - From http://trac.osgeo.org/osgeo4w/
Then when you install the R package rgdal
(rgeos
also requires GDAL), you'll most likely need to specify where you're gdal-config
file is on your machine, as well as a few other things. I have an OSX Mavericks machine, and this works for me (there's no binary for Mavericks, so install the source version):
install.packages("http://cran.r-project.org/src/contrib/rgdal_0.9-1.tar.gz", repos = NULL, type="source", configure.args = "--with-gdal-config=/Library/Frameworks/GDAL.framework/Versions/1.10/unix/bin/gdal-config --with-proj-include=/Library/Frameworks/PROJ.framework/unix/include --with-proj-lib=/Library/Frameworks/PROJ.framework/unix/lib")
The rest of the installation should be easy. If not, let us know.
Stable version from CRAN
install.packages("rnoaa")
or development version from GitHub
devtools::install_github("ropensci/rnoaa")
Load rnoaa
library('rnoaa')
ncdc_locs(locationcategoryid='CITY', sortfield='name', sortorder='desc')
#> $meta
#> $meta$totalCount
#> [1] 1980
#>
#> $meta$pageCount
#> [1] 25
#>
#> $meta$offset
#> [1] 1
#>
#>
#> $data
#> Source: local data frame [25 x 5]
#>
#> mindate maxdate name datacoverage id
#> (chr) (chr) (chr) (dbl) (chr)
#> 1 1892-08-01 2015-11-30 Zwolle, NL 1.0000 CITY:NL000012
#> 2 1901-01-01 2016-01-07 Zurich, SZ 1.0000 CITY:SZ000007
#> 3 1957-07-01 2016-01-07 Zonguldak, TU 0.8632 CITY:TU000057
#> 4 1906-01-01 2016-01-07 Zinder, NG 0.9023 CITY:NG000004
#> 5 1973-01-01 2016-01-16 Ziguinchor, SG 1.0000 CITY:SG000004
#> 6 1938-01-01 2016-01-07 Zhytomyra, UP 0.9722 CITY:UP000025
#> 7 1948-03-01 2016-01-07 Zhezkazgan, KZ 0.9299 CITY:KZ000017
#> 8 1951-01-01 2016-01-06 Zhengzhou, CH 1.0000 CITY:CH000045
#> 9 1941-01-01 2015-11-12 Zaragoza, SP 1.0000 CITY:SP000021
#> 10 1936-01-01 2009-06-17 Zaporiyhzhya, UP 0.9739 CITY:UP000024
#> .. ... ... ... ... ...
#>
#> attr(,"class")
#> [1] "ncdc_locs"
ncdc_stations(datasetid='GHCND', locationid='FIPS:12017', stationid='GHCND:USC00084289')
#> $meta
#> NULL
#>
#> $data
#> elevation mindate maxdate latitude name
#> 1 12.2 1899-02-01 2016-01-16 28.8029 INVERNESS 3 SE, FL US
#> datacoverage id elevationUnit longitude
#> 1 1 GHCND:USC00084289 METERS -82.3126
#>
#> attr(,"class")
#> [1] "ncdc_stations"
out <- ncdc(datasetid='NORMAL_DLY', stationid='GHCND:USW00014895', datatypeid='dly-tmax-normal', startdate = '2010-05-01', enddate = '2010-05-10')
head( out$data )
#> Source: local data frame [6 x 5]
#>
#> date datatype station value fl_c
#> (chr) (chr) (chr) (int) (chr)
#> 1 2010-05-01T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 652 S
#> 2 2010-05-02T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 655 S
#> 3 2010-05-03T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 658 S
#> 4 2010-05-04T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 661 S
#> 5 2010-05-05T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 663 S
#> 6 2010-05-06T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895 666 S
out <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-05-01', enddate = '2010-10-31', limit=500)
ncdc_plot(out, breaks="1 month", dateformat="%d/%m")
You can pass many outputs from calls to the noaa
function in to the ncdc_plot
function.
out1 <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-03-01', enddate = '2010-05-31', limit=500)
out2 <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-09-01', enddate = '2010-10-31', limit=500)
ncdc_plot(out1, out2, breaks="45 days")
ncdc_datasets()
#> $meta
#> $meta$offset
#> [1] 1
#>
#> $meta$count
#> [1] 11
#>
#> $meta$limit
#> [1] 25
#>
#>
#> $data
#> Source: local data frame [11 x 6]
#>
#> uid mindate maxdate name
#> (chr) (chr) (chr) (chr)
#> 1 gov.noaa.ncdc:C00040 1831-02-01 2015-06-01 Annual Summaries
#> 2 gov.noaa.ncdc:C00861 1763-01-01 2016-01-17 Daily Summaries
#> 3 gov.noaa.ncdc:C00841 1763-01-01 2015-12-01 Monthly Summaries
#> 4 gov.noaa.ncdc:C00345 1991-06-05 2016-01-20 Weather Radar (Level II)
#> 5 gov.noaa.ncdc:C00708 1994-05-20 2016-01-17 Weather Radar (Level III)
#> 6 gov.noaa.ncdc:C00821 2010-01-01 2010-01-01 Normals Annual/Seasonal
#> 7 gov.noaa.ncdc:C00823 2010-01-01 2010-12-31 Normals Daily
#> 8 gov.noaa.ncdc:C00824 2010-01-01 2010-12-31 Normals Hourly
#> 9 gov.noaa.ncdc:C00822 2010-01-01 2010-12-01 Normals Monthly
#> 10 gov.noaa.ncdc:C00505 1970-05-12 2014-01-01 Precipitation 15 Minute
#> 11 gov.noaa.ncdc:C00313 1900-01-01 2014-01-01 Precipitation Hourly
#> Variables not shown: datacoverage (dbl), id (chr)
#>
#> attr(,"class")
#> [1] "ncdc_datasets"
ncdc_datacats(locationid = 'CITY:US390029')
#> $meta
#> $meta$totalCount
#> [1] 37
#>
#> $meta$pageCount
#> [1] 25
#>
#> $meta$offset
#> [1] 1
#>
#>
#> $data
#> Source: local data frame [25 x 2]
#>
#> name id
#> (chr) (chr)
#> 1 Annual Agricultural ANNAGR
#> 2 Annual Degree Days ANNDD
#> 3 Annual Precipitation ANNPRCP
#> 4 Annual Temperature ANNTEMP
#> 5 Autumn Agricultural AUAGR
#> 6 Autumn Degree Days AUDD
#> 7 Autumn Precipitation AUPRCP
#> 8 Autumn Temperature AUTEMP
#> 9 Computed COMP
#> 10 Computed Agricultural COMPAGR
#> .. ... ...
#>
#> attr(,"class")
#> [1] "ncdc_datacats"
The function tornadoes()
simply gets all the data. So the call takes a while, but once done, is fun to play with.
shp <- tornadoes()
#> OGR data source with driver: ESRI Shapefile
#> Source: "/Users/sacmac/.rnoaa/tornadoes/tornadoes", layer: "tornado"
#> with 57988 features and 21 fields
#> Feature type: wkbLineString with 2 dimensions
library('sp')
plot(shp)
In this example, search for metadata for a single station ID
homr(qid = 'COOP:046742')
#> $`20002078`
#> $`20002078`$id
#> [1] "20002078"
#>
#> $`20002078`$head
#> preferredName latitude_dec longitude_dec precision
#> 1 PASO ROBLES MUNICIPAL AP, CA 35.6697 -120.6283 DDMMSS
#> por.beginDate por.endDate
#> 1 1949-10-05T00:00:00.000 Present
#>
#> $`20002078`$namez
#> Source: local data frame [3 x 2]
#>
#> name nameType
#> (chr) (chr)
#> 1 PASO ROBLES MUNICIPAL AP COOP
#> 2 PASO ROBLES MUNICIPAL AP PRINCIPAL
#> 3 PASO ROBLES MUNICIPAL ARPT PUB
#>
#> $`20002078`$identifiers
...
Get storm data for the year 2010
storm_data(year = 2010)
#> <NOAA Storm Data>
#> Size: 2855 X 195
#>
#> serial_num season num basin sub_basin name iso_time
#> 1 2009317S10073 2010 1 SI MM ANJA 2009-11-13 06:00:00
#> 2 2009317S10073 2010 1 SI MM ANJA 2009-11-13 12:00:00
#> 3 2009317S10073 2010 1 SI MM ANJA 2009-11-13 18:00:00
#> 4 2009317S10073 2010 1 SI MM ANJA 2009-11-14 00:00:00
#> 5 2009317S10073 2010 1 SI MM ANJA 2009-11-14 06:00:00
#> 6 2009317S10073 2010 1 SI MM ANJA 2009-11-14 12:00:00
#> 7 2009317S10073 2010 1 SI MM ANJA 2009-11-14 18:00:00
#> 8 2009317S10073 2010 1 SI MM ANJA 2009-11-15 00:00:00
#> 9 2009317S10073 2010 1 SI MM ANJA 2009-11-15 06:00:00
#> 10 2009317S10073 2010 1 SI MM ANJA 2009-11-15 12:00:00
#> .. ... ... ... ... ... ... ...
#> Variables not shown: nature (chr), latitude (dbl), longitude (dbl),
#> wind.wmo. (dbl), pres.wmo. (dbl), center (chr), wind.wmo..percentile
#> (dbl), pres.wmo..percentile (dbl), track_type (chr),
#> latitude_for_mapping (dbl), longitude_for_mapping (dbl),
#> current.basin (chr), hurdat_atl_lat (dbl), hurdat_atl_lon (dbl),
...
Get forecast for a certain variable.
res <- gefs("Total_precipitation_surface_6_Hour_Accumulation_ens", lat = 46.28125, lon = -116.2188)
head(res$data)
#> lon lat ens time2 Total_precipitation_surface_6_Hour_Accumulation_ens
#> 1 244 46 0 6 0
#> 2 244 46 1 12 0
#> 3 244 46 2 18 0
#> 4 244 46 3 24 0
#> 5 244 46 4 30 0
#> 6 244 46 5 36 0
There are a suite of functions for Argo data, a few egs:
# Spatial search - by bounding box
argo_search("coord", box = c(-40, 35, 3, 2))
# Time based search
argo_search("coord", yearmin = 2007, yearmax = 2009)
# Data quality based search
argo_search("coord", pres_qc = "A", temp_qc = "A")
# Search on partial float id number
argo_qwmo(qwmo = 49)
# Get data
argo(dac = "meds", id = 4900881, cycle = 127, dtype = "D")
Get daily mean water level data at Fairport, OH (9063053)
coops_search(station_name = 9063053, begin_date = 20150927, end_date = 20150928,
product = "daily_mean", datum = "stnd", time_zone = "lst")
#> $metadata
#> $metadata$id
#> [1] "9063053"
#>
#> $metadata$name
#> [1] "Fairport"
#>
#> $metadata$lat
#> [1] "41.7598"
#>
#> $metadata$lon
#> [1] "-81.2811"
#>
#>
#> $data
#> t v f
#> 1 2015-09-27 174.480 0,0
#> 2 2015-09-28 174.472 0,0
- Please report any issues or bugs.
- License: MIT
- Get citation information for
rnoaa
in R doingcitation(package = 'rnoaa')
- Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.