-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn.py
79 lines (55 loc) · 2.49 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import tensorflow as tf
from arenets.context.architectures.base.fc_single import FullyConnectedLayer
from arenets.arekit.common.data_type import DataType
from arenets.tf_helpers import sequence
from arenets.sample import InputSample
from arenets.context.configurations.rnn import RNNConfig
class RNN(FullyConnectedLayer):
"""
Copyright (c) Joohong Lee
page: https://github.com/roomylee
code: https://github.com/roomylee/rnn-text-classification-tf
"""
def __init__(self):
super(RNN, self).__init__()
self.__dropout_rnn_keep_prob = None
# region properties
@property
def ContextEmbeddingSize(self):
return self.Config.HiddenSize
# endregion
# region public 'set' methods
def set_input_rnn_keep_prob(self, value):
self.__dropout_rnn_keep_prob = value
# endregion
# region public 'init' methods
def init_input(self):
super(RNN, self).init_input()
self.__dropout_rnn_keep_prob = tf.compat.v1.placeholder(dtype=tf.float32,
name="ctx_dropout_rnn_keep_prob")
def init_context_embedding(self, embedded_terms):
assert(isinstance(self.Config, RNNConfig))
with tf.name_scope("rnn"):
# Length Calculation
x_length = sequence.calculate_sequence_length(self.get_input_parameter(InputSample.I_X_INDS))
s_length = tf.cast(x=tf.maximum(x_length, 1), dtype=tf.int32)
# Forward cell
cell = sequence.get_cell(hidden_size=self.Config.HiddenSize,
cell_type=self.Config.CellType,
dropout_rnn_keep_prob=self.__dropout_rnn_keep_prob)
# Output
all_outputs, _ = sequence.rnn(cell=cell,
inputs=embedded_terms,
sequence_length=s_length,
dtype=tf.float32)
h_outputs = sequence.select_last_relevant_in_sequence(all_outputs, s_length)
return h_outputs
def init_body_dependent_hidden_states(self):
pass
# endregion
# region public 'create' methods
def create_feed_dict(self, input, data_type):
feed_dict = super(RNN, self).create_feed_dict(input=input, data_type=data_type)
feed_dict[self.__dropout_rnn_keep_prob] = self.Config.DropoutRNNKeepProb if data_type == DataType.Train else 1.0
return feed_dict
# endregion