forked from Aiwiscal/ECG-ML-DL-Algorithm-Matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ClassificationSVM.m
74 lines (69 loc) · 2.56 KB
/
ClassificationSVM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
clear;clc;
%% 载入数据;
fprintf('Loading data...\n');
tic;
load('N_dat.mat');
load('L_dat.mat');
load('R_dat.mat');
load('V_dat.mat');
fprintf('Finished!\n');
toc;
fprintf('=============================================================\n');
%% 控制使用数据量,每一类5000,并生成标签;
fprintf('Data preprocessing...\n');
tic;
Nb=Nb(1:5000,:);Label1=ones(1,5000);%Label1=repmat([1;0;0;0],1,5000);
Vb=Vb(1:5000,:);Label2=ones(1,5000)*2;%Label2=repmat([0;1;0;0],1,5000);
Rb=Rb(1:5000,:);Label3=ones(1,5000)*3;%Label3=repmat([0;0;1;0],1,5000);
Lb=Lb(1:5000,:);Label4=ones(1,5000)*4;%Label4=repmat([0;0;0;1],1,5000);
Data=[Nb;Vb;Rb;Lb];
Label=[Label1,Label2,Label3,Label4];
Label=Label';
clear Nb;clear Label1;
clear Rb;clear Label2;
clear Lb;clear Label3;
clear Vb;clear Label4;
Data=Data-repmat(mean(Data,2),1,250); %使信号的均值为0,去掉基线的影响;
fprintf('Finished!\n');
toc;
fprintf('=============================================================\n');
%% 利用小波变换提取系数特征,并切分训练和测试集;
fprintf('Feature extracting and normalizing...\n');
tic;
Feature=[];
for i=1:size(Data,1)
[C,L]=wavedec(Data(i,:),5,'db6'); %% db6小波5级分解;
Feature=[Feature;C(1:25)];
end
Nums=randperm(20000); %随机打乱样本顺序,达到随机选择训练测试样本的目的;
train_x=Feature(Nums(1:10000),:);
test_x=Feature(Nums(10001:end),:);
train_y=Label(Nums(1:10000));
test_y=Label(Nums(10001:end));
[train_x,ps]=mapminmax(train_x',0,1); %利用mapminmax内建函数特征归一化到0,1之间;
test_x=mapminmax('apply',test_x',ps);
train_x=train_x';test_x=test_x';
fprintf('Finished!\n');
toc;
fprintf('=============================================================\n');
%% 训练SVM,并测试效果;
fprintf('SVM training and testing...\n');
tic;
model=libsvmtrain(train_y,train_x,'-c 2 -g 1'); %模型训练;
[ptest,~,~]=libsvmpredict(test_y,test_x,model); %模型预测;
Correct_Predict=zeros(1,4); %统计各类准确率;
Class_Num=zeros(1,4);
Conf_Mat=zeros(4);
for i=1:10000
Class_Num(test_y(i))=Class_Num(test_y(i))+1;
Conf_Mat(test_y(i),ptest(i))=Conf_Mat(test_y(i),ptest(i))+1;
if ptest(i)==test_y(i)
Correct_Predict(test_y(i))= Correct_Predict(test_y(i))+1;
end
end
ACCs=Correct_Predict./Class_Num;
fprintf('Accuracy_N = %.2f%%\n',ACCs(1)*100);
fprintf('Accuracy_V = %.2f%%\n',ACCs(2)*100);
fprintf('Accuracy_R = %.2f%%\n',ACCs(3)*100);
fprintf('Accuracy_L = %.2f%%\n',ACCs(4)*100);
toc;