-
Notifications
You must be signed in to change notification settings - Fork 3
/
code.py
74 lines (59 loc) · 2.23 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import cv2
import pandas as pd
import numpy as np
# Threshold to detect object
thres = 0.45
# Initialize the video capture
cap = cv2.VideoCapture(0)
cap.set(3, 1280) # Set the width
cap.set(4, 720) # Set the height
cap.set(10, 70) # Set the brightness
# Load class names from the coco.names file
classNames = []
classFile = 'coco.names'
with open(classFile, 'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
# Load model configuration and weights
configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightsPath = 'frozen_inference_graph.pb'
# Create a detection model
net = cv2.dnn_DetectionModel(weightsPath, configPath)
net.setInputSize(320, 320)
net.setInputScale(1.0 / 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
# Initialize an empty list to store detection logs
detection_log = []
while True:
success, img = cap.read()
if not success:
break
# Object detection
classIds, confs, bbox = net.detect(img, confThreshold=thres)
if len(classIds) != 0:
for classId, confidence, box in zip(classIds.flatten(), confs.flatten(), bbox):
# Log detections to pandas DataFrame
detection_log.append({
'class': classNames[classId - 1].upper(),
'confidence': round(confidence * 100, 2),
'box': box
})
# Draw rectangle and labels
cv2.rectangle(img, box, color=(0, 255, 0), thickness=2)
cv2.putText(img, classNames[classId - 1].upper(), (box[0] + 10, box[1] + 30),
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
cv2.putText(img, str(round(confidence * 100, 2)), (box[0] + 200, box[1] + 30),
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
# Display the output
cv2.imshow("Output", img)
if cv2.waitKey(1) & 0xFF == ord('q'): # Press 'q' to quit
break
# Save the detection logs to a pandas DataFrame
df = pd.DataFrame(detection_log)
# Display the logged detection data
print(df)
# Optionally, save the log to a CSV file
df.to_csv('detection_log.csv', index=False)
# Release resources
cap.release()
cv2.destroyAllWindows()