forked from KeyPisces/uois
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_augmentation.py
520 lines (383 loc) · 19.6 KB
/
data_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import torch
import random
import numpy as np
import numbers
from PIL import Image # PyTorch likes PIL instead of cv2
import cv2
# My libraries
from .util import utilities as util_
##### Useful Utilities #####
def array_to_tensor(array):
""" Converts a numpy.ndarray (N x H x W x C) to a torch.FloatTensor of shape (N x C x H x W)
OR
converts a nump.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W)
"""
if array.ndim == 4: # NHWC
tensor = torch.from_numpy(array).permute(0,3,1,2).float()
elif array.ndim == 3: # HWC
tensor = torch.from_numpy(array).permute(2,0,1).float()
else: # everything else
tensor = torch.from_numpy(array).float()
return tensor
def translate(img, tx, ty, interpolation=cv2.INTER_LINEAR):
""" Translate img by tx, ty
@param img: a [H x W x C] image (could be an RGB image, flow image, or label image)
"""
H, W = img.shape[:2]
M = np.array([[1,0,tx],
[0,1,ty]], dtype=np.float32)
return cv2.warpAffine(img, M, (W, H), flags=interpolation)
def rotate(img, angle, center=None, interpolation=cv2.INTER_LINEAR):
""" Rotate img <angle> degrees counter clockwise w.r.t. center of image
@param img: a [H x W x C] image (could be an RGB image, flow image, or label image)
"""
H, W = img.shape[:2]
if center is None:
center = (W//2, H//2)
M = cv2.getRotationMatrix2D(center, angle, 1)
return cv2.warpAffine(img, M, (W, H), flags=interpolation)
##### Depth Augmentations #####
def add_noise_to_depth(depth_img, noise_params):
""" Distort depth image with multiplicative gamma noise.
This is adapted from the DexNet 2.0 codebase.
Their code: https://github.com/BerkeleyAutomation/gqcnn/blob/75040b552f6f7fb264c27d427b404756729b5e88/gqcnn/sgd_optimizer.py
@param depth_img: a [H x W] set of depth z values
"""
depth_img = depth_img.copy()
# Multiplicative noise: Gamma random variable
multiplicative_noise = np.random.gamma(noise_params['gamma_shape'], noise_params['gamma_scale'])
depth_img = multiplicative_noise * depth_img
return depth_img
def add_noise_to_xyz(xyz_img, depth_img, noise_params):
""" Add (approximate) Gaussian Process noise to ordered point cloud.
This is adapted from the DexNet 2.0 codebase.
@param xyz_img: a [H x W x 3] ordered point cloud
"""
xyz_img = xyz_img.copy()
H, W, C = xyz_img.shape
# Additive noise: Gaussian process, approximated by zero-mean anisotropic Gaussian random variable,
# which is rescaled with bicubic interpolation.
small_H, small_W = (np.array([H, W]) / noise_params['gp_rescale_factor']).astype(int)
additive_noise = np.random.normal(loc=0.0, scale=noise_params['gaussian_scale'], size=(small_H, small_W, C))
additive_noise = cv2.resize(additive_noise, (W, H), interpolation=cv2.INTER_CUBIC)
xyz_img[depth_img > 0, :] += additive_noise[depth_img > 0, :]
return xyz_img
def dropout_random_ellipses(depth_img, noise_params):
""" Randomly drop a few ellipses in the image for robustness.
This is adapted from the DexNet 2.0 codebase.
Their code: https://github.com/BerkeleyAutomation/gqcnn/blob/75040b552f6f7fb264c27d427b404756729b5e88/gqcnn/sgd_optimizer.py
@param depth_img: a [H x W] set of depth z values
"""
depth_img = depth_img.copy()
# Sample number of ellipses to dropout
num_ellipses_to_dropout = np.random.poisson(noise_params['ellipse_dropout_mean'])
# Sample ellipse centers
nonzero_pixel_indices = np.array(np.where(depth_img > 0)).T # Shape: [#nonzero_pixels x 2]
dropout_centers_indices = np.random.choice(nonzero_pixel_indices.shape[0], size=num_ellipses_to_dropout)
dropout_centers = nonzero_pixel_indices[dropout_centers_indices, :] # Shape: [num_ellipses_to_dropout x 2]
# Sample ellipse radii and angles
x_radii = np.random.gamma(noise_params['ellipse_gamma_shape'], noise_params['ellipse_gamma_scale'], size=num_ellipses_to_dropout)
y_radii = np.random.gamma(noise_params['ellipse_gamma_shape'], noise_params['ellipse_gamma_scale'], size=num_ellipses_to_dropout)
angles = np.random.randint(0, 360, size=num_ellipses_to_dropout)
# Dropout ellipses
for i in range(num_ellipses_to_dropout):
center = dropout_centers[i, :]
x_radius = np.round(x_radii[i]).astype(int)
y_radius = np.round(y_radii[i]).astype(int)
angle = angles[i]
# dropout the ellipse
mask = np.zeros_like(depth_img)
mask = cv2.ellipse(mask, tuple(center[::-1]), (x_radius, y_radius), angle=angle, startAngle=0, endAngle=360, color=1, thickness=-1)
depth_img[mask == 1] = 0
return depth_img
##### RGB Augmentations #####
def standardize_image(image):
""" Convert a numpy.ndarray [H x W x 3] of images to [0,1] range, and then standardizes
@return: a [H x W x 3] numpy array of np.float32
"""
image_standardized = np.zeros_like(image).astype(np.float32)
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
for i in range(3):
image_standardized[...,i] = (image[...,i]/255. - mean[i]) / std[i]
return image_standardized
def random_color_warp(image, d_h=None, d_s=None, d_l=None):
""" Given an RGB image [H x W x 3], add random hue, saturation and luminosity to the image
Code adapted from: https://github.com/yuxng/PoseCNN/blob/master/lib/utils/blob.py
"""
H, W, _ = image.shape
image_color_warped = np.zeros_like(image)
# Set random hue, luminosity and saturation which ranges from -0.1 to 0.1
if d_h is None:
d_h = (random.random() - 0.5) * 0.2 * 256
if d_l is None:
d_l = (random.random() - 0.5) * 0.2 * 256
if d_s is None:
d_s = (random.random() - 0.5) * 0.2 * 256
# Convert the RGB to HLS
hls = cv2.cvtColor(image.round().astype(np.uint8), cv2.COLOR_RGB2HLS)
h, l, s = cv2.split(hls)
# Add the values to the image H, L, S
new_h = (np.round((h + d_h)) % 256).astype(np.uint8)
new_l = np.round(np.clip(l + d_l, 0, 255)).astype(np.uint8)
new_s = np.round(np.clip(s + d_s, 0, 255)).astype(np.uint8)
# Convert the HLS to RGB
new_hls = cv2.merge((new_h, new_l, new_s)).astype(np.uint8)
new_im = cv2.cvtColor(new_hls, cv2.COLOR_HLS2RGB)
image_color_warped = new_im.astype(np.float32)
return image_color_warped
def random_horizontal_flip(image, label):
"""Randomly horizontally flip the image/label w.p. 0.5
@param image: a [H x W x 3] numpy array
@param label: a [H x W] numpy array
"""
if random.random() > 0.5:
image = np.fliplr(image).copy()
label = np.fliplr(label).copy()
return image, label
##### Label transformations #####
def random_morphological_transform(label, noise_params):
""" Randomly erode/dilate the label
@param label: a [H x W] numpy array of {0, 1}
"""
num_tries = 0
valid_transform = False
while not valid_transform:
if num_tries >= noise_params['max_augmentation_tries']:
print('Morph: Exhausted number of augmentation tries...')
return label
# Sample whether we do erosion or dilation, and kernel size for that
x_min, y_min, x_max, y_max = util_.mask_to_tight_box(label)
sidelength = np.mean([x_max - x_min, y_max - y_min])
morphology_kernel_size = 0; num_ksize_tries = 0;
while morphology_kernel_size == 0:
if num_ksize_tries >= 50: # 50 tries for this
print(f'Morph: Exhausted number of augmentation tries... Sidelength: {sidelength}')
return label
dilation_percentage = np.random.beta(noise_params['label_dilation_alpha'],
noise_params['label_dilation_beta'])
morphology_kernel_size = int(round(sidelength * dilation_percentage))
num_ksize_tries += 1
iterations = np.random.randint(1, noise_params['morphology_max_iters']+1)
# Erode/dilate the mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (morphology_kernel_size, morphology_kernel_size))
if np.random.rand() < 0.5:
morphed_label = cv2.erode(label, kernel, iterations=iterations)
else:
morphed_label = cv2.dilate(label, kernel, iterations=iterations)
# Make sure there the mass is reasonable
if (np.count_nonzero(morphed_label) / morphed_label.size > 0.001) and \
(np.count_nonzero(morphed_label) / morphed_label.size < 0.98):
valid_transform = True
num_tries += 1
return morphed_label
def random_ellipses(label, noise_params):
""" Randomly add/drop a few ellipses in the mask
This is adapted from the DexNet 2.0 code.
Their code: https://github.com/BerkeleyAutomation/gqcnn/blob/75040b552f6f7fb264c27d427b404756729b5e88/gqcnn/sgd_optimizer.py
@param label: a [H x W] numpy array of {0, 1}
"""
H, W = label.shape
num_tries = 0
valid_transform = False
while not valid_transform:
if num_tries >= noise_params['max_augmentation_tries']:
print('Ellipse: Exhausted number of augmentation tries...')
return label
new_label = label.copy()
# Sample number of ellipses to include/dropout
num_ellipses = np.random.poisson(noise_params['num_ellipses_mean'])
# Sample ellipse centers by sampling from Gaussian at object center
pixel_indices = util_.build_matrix_of_indices(H, W)
h_idx, w_idx = np.where(new_label)
mu = np.mean(pixel_indices[h_idx, w_idx, :], axis=0) # Shape: [2]. y_center, x_center
sigma = 2*np.cov(pixel_indices[h_idx, w_idx, :].T) # Shape: [2 x 2]
if np.any(np.isnan(mu)) or np.any(np.isnan(sigma)):
print(mu, sigma, h_idx, w_idx)
ellipse_centers = np.random.multivariate_normal(mu, sigma, size=num_ellipses) # Shape: [num_ellipses x 2]
ellipse_centers = np.round(ellipse_centers).astype(int)
# Sample ellipse radii and angles
x_min, y_min, x_max, y_max = util_.mask_to_tight_box(new_label)
scale_factor = max(x_max - x_min, y_max - y_min) * noise_params['ellipse_size_percentage'] # Mean of gamma r.v.
x_radii = np.random.gamma(noise_params['ellipse_gamma_base_shape'] * scale_factor,
noise_params['ellipse_gamma_base_scale'],
size=num_ellipses)
y_radii = np.random.gamma(noise_params['ellipse_gamma_base_shape'] * scale_factor,
noise_params['ellipse_gamma_base_scale'],
size=num_ellipses)
angles = np.random.randint(0, 360, size=num_ellipses)
# Dropout ellipses
for i in range(num_ellipses):
center = ellipse_centers[i, :]
x_radius = np.round(x_radii[i]).astype(int)
y_radius = np.round(y_radii[i]).astype(int)
angle = angles[i]
# include or dropout the ellipse
mask = np.zeros_like(new_label)
mask = cv2.ellipse(mask, tuple(center[::-1]), (x_radius, y_radius), angle=angle, startAngle=0, endAngle=360, color=1, thickness=-1)
if np.random.rand() < 0.5:
new_label[mask == 1] = 0 # Drop out ellipse
else:
new_label[mask == 1] = 1 # Add ellipse
# Make sure the mass is reasonable
if (np.count_nonzero(new_label) / new_label.size > 0.001) and \
(np.count_nonzero(new_label) / new_label.size < 0.98):
valid_transform = True
num_tries += 1
return new_label
def random_translation(label, noise_params):
""" Randomly translate mask
@param label: a [H x W] numpy array of {0, 1}
"""
num_tries = 0
valid_transform = False
while not valid_transform:
if num_tries >= noise_params['max_augmentation_tries']:
print('Translate: Exhausted number of augmentation tries...')
return label
# Get tight bbox of mask
x_min, y_min, x_max, y_max = util_.mask_to_tight_box(label)
sidelength = max(x_max - x_min, y_max - y_min)
# sample translation pixels
translation_percentage = np.random.beta(noise_params['translation_alpha'],
noise_params['translation_beta'])
translation_percentage = max(translation_percentage, noise_params['translation_percentage_min'])
translation_max = int(round(translation_percentage * sidelength))
translation_max = max(translation_max, 1) # To make sure things don't error out
tx = np.random.randint(-translation_max, translation_max)
ty = np.random.randint(-translation_max, translation_max)
translated_label = translate(label, tx, ty, interpolation=cv2.INTER_NEAREST)
# Make sure the mass is reasonable
if (np.count_nonzero(translated_label) / translated_label.size > 0.001) and \
(np.count_nonzero(translated_label) / translated_label.size < 0.98):
valid_transform = True
num_tries += 1
return translated_label
def random_rotation(label, noise_params):
""" Randomly rotate mask
@param label: a [H x W] numpy array of {0, 1}
"""
H, W = label.shape
num_tries = 0
valid_transform = False
while not valid_transform:
if num_tries >= noise_params['max_augmentation_tries']:
print('Rotate: Exhausted number of augmentation tries...')
return label
# Rotate about center of box
pixel_indices = util_.build_matrix_of_indices(H, W)
h_idx, w_idx = np.where(label)
mean = np.mean(pixel_indices[h_idx, w_idx, :], axis=0) # Shape: [2]. y_center, x_center
# Sample an angle
applied_angle = np.random.uniform(-noise_params['rotation_angle_max'],
noise_params['rotation_angle_max'])
rotated_label = rotate(label, applied_angle, center=tuple(mean[::-1]), interpolation=cv2.INTER_NEAREST)
# Make sure the mass is reasonable
if (np.count_nonzero(rotated_label) / rotated_label.size > 0.001) and \
(np.count_nonzero(rotated_label) / rotated_label.size < 0.98):
valid_transform = True
num_tries += 1
return rotated_label
def random_cut(label, noise_params):
""" Randomly cut part of mask
@param label: a [H x W] numpy array of {0, 1}
"""
H, W = label.shape
num_tries = 0
valid_transform = False
while not valid_transform:
if num_tries >= noise_params['max_augmentation_tries']:
print('Cut: Exhausted number of augmentation tries...')
return label
cut_label = label.copy()
# Sample cut percentage
cut_percentage = np.random.uniform(noise_params['cut_percentage_min'],
noise_params['cut_percentage_max'])
x_min, y_min, x_max, y_max = util_.mask_to_tight_box(label)
if np.random.rand() < 0.5: # choose width
sidelength = x_max - x_min
if np.random.rand() < 0.5: # from the left
x = int(round(cut_percentage * sidelength)) + x_min
cut_label[y_min:y_max+1, x_min:x] = 0
else: # from the right
x = x_max - int(round(cut_percentage * sidelength))
cut_label[y_min:y_max+1, x:x_max+1] = 0
else: # choose height
sidelength = y_max - y_min
if np.random.rand() < 0.5: # from the top
y = int(round(cut_percentage * sidelength)) + y_min
cut_label[y_min:y, x_min:x_max+1] = 0
else: # from the bottom
y = y_max - int(round(cut_percentage * sidelength))
cut_label[y:y_max+1, x_min:x_max+1] = 0
# Make sure the mass is reasonable
if (np.count_nonzero(cut_label) / cut_label.size > 0.001) and \
(np.count_nonzero(cut_label) / cut_label.size < 0.98):
valid_transform = True
num_tries += 1
return cut_label
def random_add(label, noise_params):
""" Randomly add part of mask
@param label: a [H x W] numpy array of {0, 1}
"""
H, W = label.shape
num_tries = 0
valid_transform = False
while not valid_transform:
if num_tries >= noise_params['max_augmentation_tries']:
print('Add: Exhausted number of augmentation tries...')
return label
added_label = label.copy()
# Sample add percentage
add_percentage = np.random.uniform(noise_params['add_percentage_min'],
noise_params['add_percentage_max'])
x_min, y_min, x_max, y_max = util_.mask_to_tight_box(label)
# Sample translation from center
translation_percentage_x = np.random.uniform(0, 2*add_percentage)
tx = int(round( (x_max - x_min) * translation_percentage_x ))
translation_percentage_y = np.random.uniform(0, 2*add_percentage)
ty = int(round( (y_max - y_min) * translation_percentage_y ))
if np.random.rand() < 0.5: # choose x direction
sidelength = x_max - x_min
ty = np.random.choice([-1, 1]) * ty # mask will be moved to the left/right. up/down doesn't matter
if np.random.rand() < 0.5: # mask copied from the left.
x = int(round(add_percentage * sidelength)) + x_min
try:
temp = added_label[y_min+ty : y_max+1+ty, x_min-tx : x-tx]
added_label[y_min+ty : y_max+1+ty, x_min-tx : x-tx] = np.logical_or(temp, added_label[y_min : y_max+1, x_min : x])
except ValueError as e: # indices were out of bounds
num_tries += 1
continue
else: # mask copied from the right
x = x_max - int(round(add_percentage * sidelength))
try:
temp = added_label[y_min+ty : y_max+1+ty, x+tx : x_max+1+tx]
added_label[y_min+ty : y_max+1+ty, x+tx : x_max+1+tx] = np.logical_or(temp, added_label[y_min : y_max+1, x : x_max+1])
except ValueError as e: # indices were out of bounds
num_tries += 1
continue
else: # choose y direction
sidelength = y_max - y_min
tx = np.random.choice([-1, 1]) * tx # mask will be moved up/down. lef/right doesn't matter
if np.random.rand() < 0.5: # from the top
y = int(round(add_percentage * sidelength)) + y_min
try:
temp = added_label[y_min-ty : y-ty, x_min+tx : x_max+1+tx]
added_label[y_min-ty : y-ty, x_min+tx : x_max+1+tx] = np.logical_or(temp, added_label[y_min : y, x_min : x_max+1])
except ValueError as e: # indices were out of bounds
num_tries += 1
continue
else: # from the bottom
y = y_max - int(round(add_percentage * sidelength))
try:
temp = added_label[y+ty : y_max+1+ty, x_min+tx : x_max+1+tx]
added_label[y+ty : y_max+1+ty, x_min+tx : x_max+1+tx] = np.logical_or(temp, added_label[y : y_max+1, x_min : x_max+1])
except ValueError as e: # indices were out of bounds
num_tries += 1
continue
# Make sure the mass is reasonable
if (np.count_nonzero(added_label) / added_label.size > 0.001) and \
(np.count_nonzero(added_label) / added_label.size < 0.98):
valid_transform = True
num_tries += 1
return added_label