diff --git a/docs/CONDUCT.html b/docs/CONDUCT.html index dbd63263..3ac021fd 100644 --- a/docs/CONDUCT.html +++ b/docs/CONDUCT.html @@ -58,7 +58,7 @@
diff --git a/docs/CONTRIBUTING.html b/docs/CONTRIBUTING.html index 238a30ab..eb73f367 100644 --- a/docs/CONTRIBUTING.html +++ b/docs/CONTRIBUTING.html @@ -58,7 +58,7 @@ diff --git a/docs/LICENSE-text.html b/docs/LICENSE-text.html index 3f7fa6ea..a24058d3 100644 --- a/docs/LICENSE-text.html +++ b/docs/LICENSE-text.html @@ -58,7 +58,7 @@ diff --git a/docs/articles/getting-started-w-naniar.html b/docs/articles/getting-started-w-naniar.html index 0bb1c87e..48bc1f70 100644 --- a/docs/articles/getting-started-w-naniar.html +++ b/docs/articles/getting-started-w-naniar.html @@ -29,7 +29,7 @@ @@ -73,7 +73,7 @@vignettes/getting-started-w-naniar.Rmd
getting-started-w-naniar.Rmd
str()
skimr::skim
, ordplyr::glimpse()
dplyr::glimpse()
These works really well when you’ve got a small amount of data, but when you have more data, you are generally limited by how much you can read.
So before you start looking at missing data, you’ll need to look at the data, but what does that even mean?
@@ -222,7 +222,7 @@Representing missing data structure in a tidy format is achieved using the shadow matrix, introduced in Swayne and Buja. The shadow matrix is the same dimension as the data, and consists of binary indicators of missingness of data values, where missing is represented as “NA”, and not missing is represented as “!NA”. Although these may be represented as 1 and 0, respectively. This representation can be seen in the figure below, adding the suffix “_NA" to the variables. This structure can also be extended to allow for additional factor levels to be created. For example 0 indicates data presence, 1 indicates missing values, 2 indicates imputed value, and 3 might indicate a particular type or class of missingness, where reasons for missingness might be known or inferred. The data matrix can also be augmented to include the shadow matrix, which facilitates visualisation of univariate and bivariate missing data visualisations. Another format is to display it in long form, which facilitates heatmap style visualisations. This approach can be very helpful for giving an overview of which variables contain the most missingness. Methods can also be applied to rearrange rows and columns to find clusters, and identify other interesting features of the data that may have previously been hidden or unclear.
+Representing missing data structure in a tidy format is achieved using the shadow matrix, introduced in Swayne and Buja. The shadow matrix is the same dimension as the data, and consists of binary indicators of missingness of data values, where missing is represented as “NA”, and not missing is represented as “!NA”. Although these may be represented as 1 and 0, respectively. This representation can be seen in the figure below, adding the suffix "_NA" to the variables. This structure can also be extended to allow for additional factor levels to be created. For example 0 indicates data presence, 1 indicates missing values, 2 indicates imputed value, and 3 might indicate a particular type or class of missingness, where reasons for missingness might be known or inferred. The data matrix can also be augmented to include the shadow matrix, which facilitates visualisation of univariate and bivariate missing data visualisations. Another format is to display it in long form, which facilitates heatmap style visualisations. This approach can be very helpful for giving an overview of which variables contain the most missingness. Methods can also be applied to rearrange rows and columns to find clusters, and identify other interesting features of the data that may have previously been hidden or unclear.
Illustration of data structures for facilitating visualisation of missings and not missings
The shadow
functions provide a way to keep track of missing values. The as_shadow
function creates a dataframe with the same set of columns, but with the column names added a suffix _NA
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
-
+
## Observations: 153
## Variables: 12
## $ Ozone <int> 41, 36, 12, 18, NA, 28, 23, 19, 8, NA, 7, 16, 11, 1...
@@ -272,8 +272,8 @@
bind_shadow()
also provides a useful pattern to explore missing values, grouping by the missing/complete of one variable and looking at the mean and other summary values. Below we show the mean, sd, variance, and min and max values of Solar.R for when Ozone is present, and when it is missing.
airquality %>%
bind_shadow() %>%
- group_by(Ozone_NA) %>%
- summarise_at(.vars = "Solar.R",
+ group_by(Ozone_NA) %>%
+ summarise_at(.vars = "Solar.R",
.funs = c("mean", "sd", "var", "min", "max"),
na.rm = TRUE)
## # A tibble: 2 x 6
@@ -314,10 +314,10 @@
Numerical summaries of missing values
-naniar
also provide numerical summaries for missing data. Two convenient counters of complete values and missings are n_miss
and n_complete
. These work on both dataframes and vectors, similar to dplyr::n_distinct
-
+naniar
also provide numerical summaries for missing data. Two convenient counters of complete values and missings are n_miss
and n_complete
. These work on both dataframes and vectors, similar to dplyr::n_distinct
+
## [1] 153
-
+
## [1] 68
## [1] 44
@@ -455,9 +455,9 @@
## 9 sensor_name 0 0 2548
We see that this is in hourly_counts
. We can then explore this by month, and filder by the variable being hourly_counts
, since it is the only one with missing values.
pedestrian %>%
- group_by(month) %>%
+ group_by(month) %>%
miss_var_summary() %>%
- filter(variable == "hourly_counts")
+ filter(variable == "hourly_counts")
## # A tibble: 12 x 5
## month variable n_miss pct_miss n_miss_cumsum
## <ord> <chr> <int> <dbl> <int>
diff --git a/docs/articles/index.html b/docs/articles/index.html
index 236ae1bf..f1ff0139 100644
--- a/docs/articles/index.html
+++ b/docs/articles/index.html
@@ -58,7 +58,7 @@
vignettes/naniar-visualisation.Rmd
naniar-visualisation.Rmd
gg_miss_fct()
This plot shows the number of missings in each column, broken down by a categorical variable from the dataset. It is powered by a dplyr::group_by
statement followed by miss_var_summary()
.
This plot shows the number of missings in each column, broken down by a categorical variable from the dataset. It is powered by a dplyr::group_by
statement followed by miss_var_summary()
.
library(ggplot2)
@@ -221,7 +221,7 @@
##
## intersect, setdiff, setequal, union
## # A tibble: 231 x 5
## marital variable n_miss pct_miss n_miss_cumsum
diff --git a/docs/articles/replace-with-na.html b/docs/articles/replace-with-na.html
index 4f5d7d0a..3106b325 100644
--- a/docs/articles/replace-with-na.html
+++ b/docs/articles/replace-with-na.html
@@ -29,7 +29,7 @@
vignettes/replace-with-na.Rmd
replace-with-na.Rmd
There are some alternative ways to handle replacing values with NA in the tidyverse. These are ultimately not as expressive as the replace_with_na
functions, but they are very useful if you only have one kind of value to replace with a missing, and if you know what the missing values are upon reading in the data. These alternatives are now briefly discussed.
This function allows you to replace exact values - similar to replace_with_na
, but for all columns in a data frame. Here is how you would use it in our examples.
# instead of:
@@ -277,7 +277,7 @@
#> 4 Not Available NA 25 -101
#> 5 John Smith -98 28 -1
-df_2 <- df %>% dplyr::na_if(-99)
+df_2 <- df %>% dplyr::na_if(-99)
df_2
#> # A tibble: 5 x 4
#> name x y z
@@ -297,7 +297,7 @@
df_3 <- df %>% replace_with_na_all(condition = ~.x %in% na_strings)
# Not run:
-df_4 <- df %>% dplyr::na_if(x = ., y = na_strings)
+df_4 <- df %>% dplyr::na_if(x = ., y = na_strings)
# Error in check_length(y, x, fmt_args("y"), glue("same as {fmt_args(~x)}")) :
# argument "y" is missing, with no default
It also cannot handle more complex equations, where you want to refer to values in other columns, or values less than or greater than another value.
diff --git a/docs/authors.html b/docs/authors.html index 3ae2fe27..2add12e6 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -58,7 +58,7 @@ diff --git a/docs/index.html b/docs/index.html index 2a4c7723..a301fda3 100644 --- a/docs/index.html +++ b/docs/index.html @@ -33,7 +33,7 @@ @@ -252,7 +252,7 @@naniar provides numerical summaries of missing data, that follow a consistent rule that uses a syntax begining with miss_
. Summaries focussing on variables or a single selected variable, start with miss_var_
, and summaries for cases (the initial collected row order of the data), they start with miss_case_
. All of these functions that return dataframes also work with dplyr’s group_by()
.
naniar provides numerical summaries of missing data, that follow a consistent rule that uses a syntax begining with miss_
. Summaries focussing on variables or a single selected variable, start with miss_var_
, and summaries for cases (the initial collected row order of the data), they start with miss_case_
. All of these functions that return dataframes also work with dplyr’s group_by()
.
For example, we can look at the number and percent of missings in each case and variable with miss_var_summary()
, and miss_case_summary()
, which both return output ordered by the number of missing values.
miss_var_summary(airquality)
@@ -280,7 +280,7 @@
#> 9 33 1 16.7 11
#> 10 34 1 16.7 12
#> # ... with 143 more rows
You could also group_by()
to work out the number of missings in each variable across the levels within it.
You could also group_by()
to work out the number of missings in each variable across the levels within it.
library(dplyr)
#>
@@ -292,7 +292,7 @@
#>
#> intersect, setdiff, setequal, union
airquality %>%
- group_by(Month) %>%
+ group_by(Month) %>%
miss_var_summary()
#> # A tibble: 25 x 5
#> Month variable n_miss pct_miss n_miss_cumsum
diff --git a/docs/issue_template.html b/docs/issue_template.html
index 2a4e3038..825d17b9 100644
--- a/docs/issue_template.html
+++ b/docs/issue_template.html
@@ -58,7 +58,7 @@
NEWS.md
+ This is a patch release that removes tidyselect
from the package Imports, as it is unnecessary. Fixes #174
# select variables starting with a particular string. library(dplyr)#> -#>#>+#>#>+#> +#>#>#> #> #> @@ -470,7 +472,7 @@#> Ozone Solar.R Wind Temp Month Day #> 1 41.00000 190 7.4 67 5 1 #> 2 36.00000 118 8.0 72 5 2 #> 3 12.00000 149 12.6 74 5 3 @@ -628,7 +630,7 @@diff --git a/docs/reference/impute_mean.html b/docs/reference/impute_mean.html index c9aabf15..3bd52e36 100644 --- a/docs/reference/impute_mean.html +++ b/docs/reference/impute_mean.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/index.html b/docs/reference/index.html index e5de8dfb..d225031e 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -58,7 +58,7 @@ diff --git a/docs/reference/is_shadow.html b/docs/reference/is_shadow.html index 9654e2f8..1ae4fd83 100644 --- a/docs/reference/is_shadow.html +++ b/docs/reference/is_shadow.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/label_miss_1d.html b/docs/reference/label_miss_1d.html index ffb50b04..c22e3ac6 100644 --- a/docs/reference/label_miss_1d.html +++ b/docs/reference/label_miss_1d.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/label_miss_2d.html b/docs/reference/label_miss_2d.html index 8eab09c0..493d678e 100644 --- a/docs/reference/label_miss_2d.html +++ b/docs/reference/label_miss_2d.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/label_missings.html b/docs/reference/label_missings.html index 71cc457f..6fd798b9 100644 --- a/docs/reference/label_missings.html +++ b/docs/reference/label_missings.html @@ -61,7 +61,7 @@ @@ -169,7 +169,7 @@Examp library(ggplot2) airquality %>% bind_shadow() %>% - impute_below_at(vars(Ozone, Solar.R)) %>% + impute_below_at(vars(Ozone, Solar.R)) %>% add_label_shadow() %>% ggplot(aes(x = Ozone, y = Solar.R, diff --git a/docs/reference/impute_below_if.html b/docs/reference/impute_below_if.html index 36693409..ca079626 100644 --- a/docs/reference/impute_below_if.html +++ b/docs/reference/impute_below_if.html @@ -63,7 +63,7 @@
Examp #> [151] "Not Missing" "Not Missing" "Not Missing"
#> Ozone Solar.R Wind Temp Month Day is_missing +airquality %>% mutate(is_missing = label_missings(airquality))#> Ozone Solar.R Wind Temp Month Day is_missing #> 1 41 190 7.4 67 5 1 Not Missing #> 2 36 118 8.0 72 5 2 Not Missing #> 3 12 149 12.6 74 5 3 Not Missing diff --git a/docs/reference/label_shadow.html b/docs/reference/label_shadow.html index a2a01eb8..258ee41f 100644 --- a/docs/reference/label_shadow.html +++ b/docs/reference/label_shadow.html @@ -61,7 +61,7 @@diff --git a/docs/reference/label_shadow_matrix.html b/docs/reference/label_shadow_matrix.html index 757b28b4..7d15050a 100644 --- a/docs/reference/label_shadow_matrix.html +++ b/docs/reference/label_shadow_matrix.html @@ -63,7 +63,7 @@ diff --git a/docs/reference/miss-complete-case-pct.html b/docs/reference/miss-complete-case-pct.html index 629441fd..2ae1a959 100644 --- a/docs/reference/miss-complete-case-pct.html +++ b/docs/reference/miss-complete-case-pct.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/miss-complete-case-prop.html b/docs/reference/miss-complete-case-prop.html index 1fb73c13..c9ece135 100644 --- a/docs/reference/miss-complete-case-prop.html +++ b/docs/reference/miss-complete-case-prop.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/miss-complete-var-pct.html b/docs/reference/miss-complete-var-pct.html index 518e2a31..b07422a1 100644 --- a/docs/reference/miss-complete-var-pct.html +++ b/docs/reference/miss-complete-var-pct.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/miss-complete-var-prop.html b/docs/reference/miss-complete-var-prop.html index 63c4bf75..f8d38f57 100644 --- a/docs/reference/miss-complete-var-prop.html +++ b/docs/reference/miss-complete-var-prop.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/miss_case_summary.html b/docs/reference/miss_case_summary.html index 001f49b6..1c7a773d 100644 --- a/docs/reference/miss_case_summary.html +++ b/docs/reference/miss_case_summary.html @@ -63,7 +63,7 @@ @@ -158,7 +158,7 @@Examp # works with group_by from dplyr library(dplyr) airquality %>% - group_by(Month) %>% + group_by(Month) %>% miss_case_summary()
#> # A tibble: 153 x 5 #> Month case n_miss pct_miss n_miss_cumsum #> <int> <int> <int> <dbl> <int> diff --git a/docs/reference/miss_case_table.html b/docs/reference/miss_case_table.html index 16babb59..1da1203e 100644 --- a/docs/reference/miss_case_table.html +++ b/docs/reference/miss_case_table.html @@ -62,7 +62,7 @@@@ -145,7 +145,7 @@Examp #> 2 1 40 26.1 #> 3 2 2 1.31
#> # A tibble: 11 x 4 #> Month n_miss_in_case n_cases pct_miss #> <int> <int> <int> <dbl> diff --git a/docs/reference/miss_prop_summary.html b/docs/reference/miss_prop_summary.html index 7b262cbb..310daaae 100644 --- a/docs/reference/miss_prop_summary.html +++ b/docs/reference/miss_prop_summary.html @@ -64,7 +64,7 @@@@ -146,7 +146,7 @@Examp #> df var case #> <dbl> <dbl> <dbl> #> 1 0.0479 0.333 0.275
#> # A tibble: 5 x 4 #> Month df var case #> <int> <dbl> <dbl> <dbl> #> 1 5 0.0581 0.4 0.226 diff --git a/docs/reference/miss_scan_count.html b/docs/reference/miss_scan_count.html index c9123453..98e95e05 100644 --- a/docs/reference/miss_scan_count.html +++ b/docs/reference/miss_scan_count.html @@ -66,7 +66,7 @@diff --git a/docs/reference/miss_summary.html b/docs/reference/miss_summary.html index d4b0c5e4..c2ec7e1d 100644 --- a/docs/reference/miss_summary.html +++ b/docs/reference/miss_summary.html @@ -62,7 +62,7 @@ @@ -167,7 +167,7 @@Examp #>
# etc, etc, etc. library(dplyr) -s_miss_group <- group_by(airquality, Month) %>% miss_summary() +s_miss_group <- group_by(airquality, Month) %>% miss_summary() s_miss_group$miss_df_prop#> [1] 0.04793028s_miss_group$miss_case_table#> [[1]] #> # A tibble: 11 x 4 #> Month n_miss_in_case n_cases pct_miss diff --git a/docs/reference/miss_var_run.html b/docs/reference/miss_var_run.html index e9711882..98ea0543 100644 --- a/docs/reference/miss_var_run.html +++ b/docs/reference/miss_var_run.html @@ -64,7 +64,7 @@@@ -166,7 +166,7 @@Examp # find the number of runs missing/complete for each month pedestrian %>% - group_by(month) %>% + group_by(month) %>% miss_var_run(hourly_counts)
#> # A tibble: 51 x 3 #> month run_length is_na #> <ord> <int> <chr> @@ -185,8 +185,8 @@Examp # explore the number of missings in a given run miss_var_run(pedestrian, hourly_counts) %>% - filter(is_na == "missing") %>% - count(run_length) %>% + filter(is_na == "missing") %>% + count(run_length) %>% ggplot(aes(x = run_length, y = n)) + geom_col()
@@ -197,7 +197,7 @@Examp geom_boxplot()
# using group_by pedestrian %>% - group_by(month) %>% + group_by(month) %>% miss_var_run(hourly_counts)#> # A tibble: 51 x 3 #> month run_length is_na #> <ord> <int> <chr> diff --git a/docs/reference/miss_var_span.html b/docs/reference/miss_var_span.html index 21a3e4dd..72a2f668 100644 --- a/docs/reference/miss_var_span.html +++ b/docs/reference/miss_var_span.html @@ -65,7 +65,7 @@@@ -172,7 +172,7 @@Examp #> # ... with 215 more rows
library(dplyr) pedestrian %>% - group_by(month) %>% + group_by(month) %>% miss_var_span(var = hourly_counts, span_every = 168)#> # A tibble: 230 x 6 #> month span_counter n_miss n_complete prop_miss prop_complete diff --git a/docs/reference/miss_var_summary.html b/docs/reference/miss_var_summary.html index e5b731e4..9f1de32a 100644 --- a/docs/reference/miss_var_summary.html +++ b/docs/reference/miss_var_summary.html @@ -63,7 +63,7 @@@@ -177,7 +177,7 @@Examp # works with group_by from dplyr library(dplyr) airquality %>% - group_by(Month) %>% + group_by(Month) %>% miss_var_summary()
#> # A tibble: 25 x 5 #> Month variable n_miss pct_miss n_miss_cumsum #> <int> <chr> <int> <dbl> <int> diff --git a/docs/reference/miss_var_table.html b/docs/reference/miss_var_table.html index 333d9a44..62e678ad 100644 --- a/docs/reference/miss_var_table.html +++ b/docs/reference/miss_var_table.html @@ -63,7 +63,7 @@@@ -148,7 +148,7 @@Examp #> 3 37 1 16.7
#> # A tibble: 12 x 4 #> Month n_miss_in_var n_vars pct_miss #> <int> <int> <int> <dbl> diff --git a/docs/reference/miss_var_which.html b/docs/reference/miss_var_which.html index d008ebdb..40576474 100644 --- a/docs/reference/miss_var_which.html +++ b/docs/reference/miss_var_which.html @@ -64,7 +64,7 @@diff --git a/docs/reference/n-var-case-complete.html b/docs/reference/n-var-case-complete.html index 4deb2a88..02469d94 100644 --- a/docs/reference/n-var-case-complete.html +++ b/docs/reference/n-var-case-complete.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/n-var-case-miss.html b/docs/reference/n-var-case-miss.html index 69902a4a..f38af0e1 100644 --- a/docs/reference/n-var-case-miss.html +++ b/docs/reference/n-var-case-miss.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/n_complete.html b/docs/reference/n_complete.html index 06da0611..0bf714bb 100644 --- a/docs/reference/n_complete.html +++ b/docs/reference/n_complete.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/n_complete_row.html b/docs/reference/n_complete_row.html index 057317ab..9b934d58 100644 --- a/docs/reference/n_complete_row.html +++ b/docs/reference/n_complete_row.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/n_miss.html b/docs/reference/n_miss.html index ff872499..a0b86031 100644 --- a/docs/reference/n_miss.html +++ b/docs/reference/n_miss.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/n_miss_row.html b/docs/reference/n_miss_row.html index 73d6deea..ab269b78 100644 --- a/docs/reference/n_miss_row.html +++ b/docs/reference/n_miss_row.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/naniar-ggproto.html b/docs/reference/naniar-ggproto.html index a486b2ce..b1d2abb2 100644 --- a/docs/reference/naniar-ggproto.html +++ b/docs/reference/naniar-ggproto.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/naniar.html b/docs/reference/naniar.html index aeaa926f..2ed6cf75 100644 --- a/docs/reference/naniar.html +++ b/docs/reference/naniar.html @@ -63,7 +63,7 @@ diff --git a/docs/reference/oceanbuoys.html b/docs/reference/oceanbuoys.html index 9636bf6d..41bd0ba8 100644 --- a/docs/reference/oceanbuoys.html +++ b/docs/reference/oceanbuoys.html @@ -64,7 +64,7 @@ diff --git a/docs/reference/pct_complete.html b/docs/reference/pct_complete.html index b4ddc47a..79916bc4 100644 --- a/docs/reference/pct_complete.html +++ b/docs/reference/pct_complete.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/pct_miss.html b/docs/reference/pct_miss.html index 2b0b4c51..45c148de 100644 --- a/docs/reference/pct_miss.html +++ b/docs/reference/pct_miss.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/pedestrian.html b/docs/reference/pedestrian.html index 6609ea97..14962e3c 100644 --- a/docs/reference/pedestrian.html +++ b/docs/reference/pedestrian.html @@ -65,7 +65,7 @@ diff --git a/docs/reference/prop_complete.html b/docs/reference/prop_complete.html index d097a201..ebc12317 100644 --- a/docs/reference/prop_complete.html +++ b/docs/reference/prop_complete.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/prop_complete_row.html b/docs/reference/prop_complete_row.html index 8eb8e723..58f6566c 100644 --- a/docs/reference/prop_complete_row.html +++ b/docs/reference/prop_complete_row.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/prop_miss.html b/docs/reference/prop_miss.html index 683e7133..059dc366 100644 --- a/docs/reference/prop_miss.html +++ b/docs/reference/prop_miss.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/prop_miss_row.html b/docs/reference/prop_miss_row.html index 689b609c..dc47a203 100644 --- a/docs/reference/prop_miss_row.html +++ b/docs/reference/prop_miss_row.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/reexports.html b/docs/reference/reexports.html index af259a16..83f10ede 100644 --- a/docs/reference/reexports.html +++ b/docs/reference/reexports.html @@ -69,7 +69,7 @@ diff --git a/docs/reference/replace_to_na.html b/docs/reference/replace_to_na.html index 2b1a3aa2..c9f3268f 100644 --- a/docs/reference/replace_to_na.html +++ b/docs/reference/replace_to_na.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/replace_with_na.html b/docs/reference/replace_with_na.html index 8da68383..b552cdd0 100644 --- a/docs/reference/replace_with_na.html +++ b/docs/reference/replace_with_na.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/replace_with_na_all.html b/docs/reference/replace_with_na_all.html index 371b0bdd..f35e955a 100644 --- a/docs/reference/replace_with_na_all.html +++ b/docs/reference/replace_with_na_all.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/replace_with_na_at.html b/docs/reference/replace_with_na_at.html index 46e3ef0b..c2482077 100644 --- a/docs/reference/replace_with_na_at.html +++ b/docs/reference/replace_with_na_at.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/replace_with_na_if.html b/docs/reference/replace_with_na_if.html index b7f65eac..0fb6a7f0 100644 --- a/docs/reference/replace_with_na_if.html +++ b/docs/reference/replace_with_na_if.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/riskfactors.html b/docs/reference/riskfactors.html index da64bf11..2fe2c400 100644 --- a/docs/reference/riskfactors.html +++ b/docs/reference/riskfactors.html @@ -65,7 +65,7 @@ diff --git a/docs/reference/scoped-impute_mean.html b/docs/reference/scoped-impute_mean.html index ff30bf20..5459d655 100644 --- a/docs/reference/scoped-impute_mean.html +++ b/docs/reference/scoped-impute_mean.html @@ -65,7 +65,7 @@ @@ -463,7 +463,7 @@Examp #> 152 18.00000 131.0000 8.0 76 9 29 #> 153 20.00000 223.0000 11.5 68 9 30
#> Ozone Solar.R Wind Temp Month Day #> 1 41.00000 190 7.4 67 5 1 #> 2 36.00000 118 8.0 72 5 2 #> 3 12.00000 149 12.6 74 5 3 diff --git a/docs/reference/shadow_shift.html b/docs/reference/shadow_shift.html index 677f566a..9b1d536f 100644 --- a/docs/reference/shadow_shift.html +++ b/docs/reference/shadow_shift.html @@ -65,7 +65,7 @@@@ -174,7 +174,7 @@Examp #> [141] 13.00000 24.00000 16.00000 13.00000 23.00000 36.00000 7.00000 #> [148] 14.00000 30.00000 -14.83089 14.00000 18.00000 20.00000
#> Ozone Solar.R Wind Temp Month Day Ozone_shift #> 1 41 190 7.4 67 5 1 41.00000 #> 2 36 118 8.0 72 5 2 36.00000 #> 3 12 149 12.6 74 5 3 12.00000 diff --git a/docs/reference/shadow_shift.numeric.html b/docs/reference/shadow_shift.numeric.html index edd12d06..14403c42 100644 --- a/docs/reference/shadow_shift.numeric.html +++ b/docs/reference/shadow_shift.numeric.html @@ -61,7 +61,7 @@diff --git a/docs/reference/stat_miss_point.html b/docs/reference/stat_miss_point.html index 5cce5241..ae7ff6d2 100644 --- a/docs/reference/stat_miss_point.html +++ b/docs/reference/stat_miss_point.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/test_if_dataframe.html b/docs/reference/test_if_dataframe.html index ac6ef37b..f18115ed 100644 --- a/docs/reference/test_if_dataframe.html +++ b/docs/reference/test_if_dataframe.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/test_if_missing.html b/docs/reference/test_if_missing.html index 30eb366f..945c73b6 100644 --- a/docs/reference/test_if_missing.html +++ b/docs/reference/test_if_missing.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/test_if_null.html b/docs/reference/test_if_null.html index c6bfde0d..6f687ebd 100644 --- a/docs/reference/test_if_null.html +++ b/docs/reference/test_if_null.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/unbinders.html b/docs/reference/unbinders.html index 69e0f730..84f3363f 100644 --- a/docs/reference/unbinders.html +++ b/docs/reference/unbinders.html @@ -61,7 +61,7 @@ diff --git a/docs/reference/where_na.html b/docs/reference/where_na.html index 498e522e..638a3f72 100644 --- a/docs/reference/where_na.html +++ b/docs/reference/where_na.html @@ -62,7 +62,7 @@ diff --git a/docs/reference/which_na.html b/docs/reference/which_na.html index 2cf49503..0492916a 100644 --- a/docs/reference/which_na.html +++ b/docs/reference/which_na.html @@ -61,7 +61,7 @@