diff --git a/articles/Integrating-User-Defined-Functions-into-rxode2.html b/articles/Integrating-User-Defined-Functions-into-rxode2.html index 7a8b001d3..e8907fbda 100644 --- a/articles/Integrating-User-Defined-Functions-into-rxode2.html +++ b/articles/Integrating-User-Defined-Functions-into-rxode2.html @@ -248,8 +248,8 @@
The C version is almost twice as fast as the R version. You may have noticed the conversion also created C versions of the first derivative. This is done automatically and gives not just C versions of function, diff --git a/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/benmchmark1-1.png b/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/benmchmark1-1.png index 09c5cefe1..2831da80e 100644 Binary files a/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/benmchmark1-1.png and b/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/benmchmark1-1.png differ diff --git a/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/convertC-1.png b/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/convertC-1.png index 6d2263fb1..41fa69a3d 100644 Binary files a/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/convertC-1.png and b/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/convertC-1.png differ diff --git a/articles/rxode2-cmt.html b/articles/rxode2-cmt.html index 78155d0dc..ed4591f62 100644 --- a/articles/rxode2-cmt.html +++ b/articles/rxode2-cmt.html @@ -380,8 +380,8 @@
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
summary(pbpk)
#> rxode2 2.0.14.9000 model named rx_5da87c6d1f91668f6d05372040b2eafc model (ready).
-#> DLL: /tmp/RtmpG6A6n6/rxode2/rx_5da87c6d1f91668f6d05372040b2eafc__.rxd/rx_5da87c6d1f91668f6d05372040b2eafc_.so
+#> rxode2 2.0.14.9000 model named rx_ebc703eece126d4bf12e074fd16966f2 model (ready).
+#> DLL: /tmp/RtmpFScia9/rxode2/rx_ebc703eece126d4bf12e074fd16966f2__.rxd/rx_ebc703eece126d4bf12e074fd16966f2_.so
#> NULL
#>
#> Calculated Variables:
@@ -731,7 +731,7 @@ Appending compartments to the model
ode.1c.ka$simulationModel
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_93a4b5aac982087fb323c655d89a3bb9 model (ready).
+#> rxode2 2.0.14.9000 model named rx_28ca3a83fb397e38ec72a547f91659fa model (ready).
#> x$state: depot, center
#> x$stateExtra: eff
#> x$params: V, KA, CL
diff --git a/articles/rxode2-model-types.html b/articles/rxode2-model-types.html
index ff01c0997..ba39fda15 100644
--- a/articles/rxode2-model-types.html
+++ b/articles/rxode2-model-types.html
@@ -237,18 +237,18 @@ Solved compartment modelsVC
or V
),
Peripheral/Tissue (VP
, VT
). While more
translations are available, some example translations are below:
-
-Another popular parameterization is in terms of micro-constants.
+
+Another popular parameterization is in terms of micro-constants.
rxode2 assumes compartment 1
is the central compartment.
The elimination constant would be specified by K
,
Ke
or Kel
. Some example translations are
below:
-
-The last parameterization possible is using alpha
and
+
+The last parameterization possible is using alpha
and
V
and/or A
/B
/C
. Some
example translations are below:
-
-Once the linCmt()
sleuthing is complete, the
+
+Once the linCmt()
sleuthing is complete, the
1
, 2
or 3
compartment model
solution is used as the value of linCmt()
.
The compartments where you can dose in a linear solved system are
diff --git a/articles/rxode2-nesting.html b/articles/rxode2-nesting.html
index 494c07bb7..1bd23ba5e 100644
--- a/articles/rxode2-nesting.html
+++ b/articles/rxode2-nesting.html
@@ -312,24 +312,24 @@
Uncertainty in Model parametersdimnames(tMat) <- list(names(theta), names(theta))
tMat
-#> TKA TCl V2 Q V3
-#> TKA 0.10524323 0.0195962916 -0.040781262 -0.12273095 -0.010991507
-#> TCl 0.01959629 0.0911766794 -0.019584328 -0.07810065 -0.006831950
-#> V2 -0.04078126 -0.0195843283 0.040144815 0.05199231 0.002913150
-#> Q -0.12273095 -0.0781006450 0.051992306 0.30989598 0.102225734
-#> V3 -0.01099151 -0.0068319505 0.002913150 0.10222573 0.141390721
-#> Kin 0.01554079 0.0001343313 -0.018775609 -0.06667904 -0.036404209
-#> Kout -0.07183484 -0.0531330807 0.028680084 0.11728741 -0.033987922
-#> EC50 0.03725729 0.0134040543 -0.003635586 -0.09243313 -0.002517493
-#> Kin Kout EC50
-#> TKA 0.0155407941 -0.07183484 0.037257286
-#> TCl 0.0001343313 -0.05313308 0.013404054
-#> V2 -0.0187756094 0.02868008 -0.003635586
-#> Q -0.0666790392 0.11728741 -0.092433134
-#> V3 -0.0364042091 -0.03398792 -0.002517493
-#> Kin 0.0510761277 -0.03593031 0.049433157
-#> Kout -0.0359303052 0.24617352 -0.104651320
-#> EC50 0.0494331568 -0.10465132 0.134046722
+#> TKA TCl V2 Q V3 Kin
+#> TKA 0.18214722 -0.065073613 0.154851667 -0.06849577 -0.05144454 0.09665182
+#> TCl -0.06507361 0.211128764 0.025454389 -0.03638970 0.09481766 -0.08117011
+#> V2 0.15485167 0.025454389 0.226483333 -0.13042048 -0.01811260 0.06004728
+#> Q -0.06849577 -0.036389697 -0.130420482 0.16011352 0.05065716 -0.04982262
+#> V3 -0.05144454 0.094817658 -0.018112600 0.05065716 0.23800567 -0.01442470
+#> Kin 0.09665182 -0.081170111 0.060047278 -0.04982262 -0.01442470 0.12352553
+#> Kout -0.04309263 0.007532678 -0.066664954 -0.06649494 -0.07215505 -0.01753545
+#> EC50 -0.02269191 0.044278855 -0.004855918 0.02220431 0.06194107 -0.02223489
+#> Kout EC50
+#> TKA -0.043092630 -0.022691906
+#> TCl 0.007532678 0.044278855
+#> V2 -0.066664954 -0.004855918
+#> Q -0.066494941 0.022204306
+#> V3 -0.072155052 0.061941066
+#> Kin -0.017535455 -0.022234891
+#> Kout 0.218063152 -0.005305191
+#> EC50 -0.005305191 0.053124939
Nesting Variability
@@ -407,16 +407,16 @@ Solving the problem#> # A tibble: 8,000 x 24
#> sim.id id `inv.Cl(inv==1)` `inv.Cl(inv==2)` `inv.Ka(inv==1)`
#> <int> <fct> <dbl> <dbl> <dbl>
-#> 1 1 1 -0.0130 0.169 0.00797
-#> 2 1 2 -0.0130 0.169 0.00797
-#> 3 1 3 -0.0130 0.169 0.00797
-#> 4 1 4 -0.0130 0.169 0.00797
-#> 5 1 5 -0.0130 0.169 0.00797
-#> 6 1 6 -0.0130 0.169 0.00797
-#> 7 1 7 -0.0130 0.169 0.00797
-#> 8 1 8 -0.0130 0.169 0.00797
-#> 9 1 9 -0.0130 0.169 0.00797
-#> 10 1 10 -0.0130 0.169 0.00797
+#> 1 1 1 0.000394 0.0880 0.0544
+#> 2 1 2 0.000394 0.0880 0.0544
+#> 3 1 3 0.000394 0.0880 0.0544
+#> 4 1 4 0.000394 0.0880 0.0544
+#> 5 1 5 0.000394 0.0880 0.0544
+#> 6 1 6 0.000394 0.0880 0.0544
+#> 7 1 7 0.000394 0.0880 0.0544
+#> 8 1 8 0.000394 0.0880 0.0544
+#> 9 1 9 0.000394 0.0880 0.0544
+#> 10 1 10 0.000394 0.0880 0.0544
#> # i 7,990 more rows
#> # i 19 more variables: `inv.Ka(inv==2)` <dbl>, `eye.Cl(eye==1)` <dbl>,
#> # `eye.Cl(eye==2)` <dbl>, `eye.Ka(eye==1)` <dbl>, `eye.Ka(eye==2)` <dbl>,
@@ -433,14 +433,14 @@ Solving the problem#>
#> -- First part of data (object): --
#> # A tibble: 976,000 x 21
-#> sim.id id time inv.Cl inv.Ka eye.Cl eye.Ka iov.Cl iov.Ka C2 C3
-#> <int> <int> [h] <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
-#> 1 1 1 0 -0.0130 0.00797 -0.364 -0.0797 0.179 0.122 0 0
-#> 2 1 1 0.1 -0.0130 0.00797 0.370 -0.365 0.179 0.122 5.97 0.0114
-#> 3 1 1 4 -0.0130 0.00797 -0.364 -0.0797 0.179 0.122 38.4 4.13
-#> 4 1 1 4.1 -0.0130 0.00797 0.370 -0.365 0.179 0.122 32.6 4.22
-#> 5 1 1 8 -0.0130 0.00797 -0.364 -0.0797 0.179 0.122 32.9 6.65
-#> 6 1 1 8.1 -0.0130 0.00797 0.370 -0.365 0.179 0.122 11.3 6.68
+#> sim.id id time inv.Cl inv.Ka eye.Cl eye.Ka iov.Cl iov.Ka C2 C3
+#> <int> <int> [h] <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
+#> 1 1 1 0 0.000394 0.0544 0.0887 0.0923 0.0426 0.0697 0 0
+#> 2 1 1 0.1 0.000394 0.0544 0.285 -0.151 0.0426 0.0697 4.62 0.00765
+#> 3 1 1 4 0.000394 0.0544 0.0887 0.0923 0.0426 0.0697 7.10 2.53
+#> 4 1 1 4.1 0.000394 0.0544 0.285 -0.151 0.0426 0.0697 20.5 2.59
+#> 5 1 1 8 0.000394 0.0544 0.0887 0.0923 0.0426 0.0697 3.92 4.18
+#> 6 1 1 8.1 0.000394 0.0544 0.285 -0.151 0.0426 0.0697 15.2 4.20
#> # i 975,994 more rows
#> # i 10 more variables: CL <dbl>, KA <dbl>, ef0 <dbl>, depot <dbl>, centr <dbl>,
#> # peri <dbl>, eff <dbl>, occ <fct>, eye <fct>, inv <fct>
@@ -462,63 +462,63 @@ Solving the problem
print(head(s$params))
#> sim.id id inv.Cl(inv==1) inv.Cl(inv==2) inv.Ka(inv==1) inv.Ka(inv==2)
-#> 1 1 1 -0.01297846 0.1687315 0.007971401 -0.04895385
-#> 2 1 2 -0.01297846 0.1687315 0.007971401 -0.04895385
-#> 3 1 3 -0.01297846 0.1687315 0.007971401 -0.04895385
-#> 4 1 4 -0.01297846 0.1687315 0.007971401 -0.04895385
-#> 5 1 5 -0.01297846 0.1687315 0.007971401 -0.04895385
-#> 6 1 6 -0.01297846 0.1687315 0.007971401 -0.04895385
+#> 1 1 1 0.000394143 0.08802844 0.05437463 -0.213229
+#> 2 1 2 0.000394143 0.08802844 0.05437463 -0.213229
+#> 3 1 3 0.000394143 0.08802844 0.05437463 -0.213229
+#> 4 1 4 0.000394143 0.08802844 0.05437463 -0.213229
+#> 5 1 5 0.000394143 0.08802844 0.05437463 -0.213229
+#> 6 1 6 0.000394143 0.08802844 0.05437463 -0.213229
#> eye.Cl(eye==1) eye.Cl(eye==2) eye.Ka(eye==1) eye.Ka(eye==2) iov.Cl(occ==1)
-#> 1 -0.36434523 0.3704529236 -0.07970633 -0.36508422 0.178666438
-#> 2 -0.10723630 -0.1543465784 -0.36039433 0.05790772 -0.001530669
-#> 3 -0.05693862 -0.0707329793 0.05983005 -0.04233135 -0.033899194
-#> 4 -0.03024253 0.3470127990 -0.26257778 -0.17789013 -0.076572829
-#> 5 0.07694592 0.0996393327 -0.07031235 -0.06961614 0.015876306
-#> 6 -0.17759027 0.0002101827 0.10656827 0.54980122 -0.042696454
+#> 1 0.08874123 0.284908310 0.09233534 -0.15129633 0.04256025
+#> 2 -0.22329690 0.069170727 -0.41096481 -0.01330093 -0.10302790
+#> 3 -0.32858952 -0.240481495 0.04094987 0.27816655 -0.01911401
+#> 4 0.20057725 0.102077397 0.09427646 0.10042832 -0.10427700
+#> 5 -0.17589887 0.439108541 -0.09699372 0.34545120 -0.05921163
+#> 6 0.31540626 0.008289514 -0.48644444 -0.24490623 -0.08336518
#> iov.Cl(occ==2) iov.Ka(occ==1) iov.Ka(occ==2) V2 V3 TCl
-#> 1 -0.05670826 0.121693604 0.021541003 39.94027 296.5209 18.59632
-#> 2 -0.01018096 -0.003395944 0.009158207 39.94027 296.5209 18.59632
-#> 3 -0.01926255 -0.048021922 -0.188427781 39.94027 296.5209 18.59632
-#> 4 -0.17832430 0.048755911 0.084187050 39.94027 296.5209 18.59632
-#> 5 0.07169803 -0.084700170 -0.017363741 39.94027 296.5209 18.59632
-#> 6 -0.03108922 -0.060459613 -0.072644806 39.94027 296.5209 18.59632
-#> eta.Cl TKA eta.Ka Q Kin Kout EC50
-#> 1 -0.27253945 0.1845138 0.28787878 10.10728 1.41481 1.08659 200.2634
-#> 2 -0.27825150 0.1845138 0.07849200 10.10728 1.41481 1.08659 200.2634
-#> 3 -0.19629964 0.1845138 0.12164312 10.10728 1.41481 1.08659 200.2634
-#> 4 -0.04954326 0.1845138 0.08188589 10.10728 1.41481 1.08659 200.2634
-#> 5 0.01468967 0.1845138 0.02590364 10.10728 1.41481 1.08659 200.2634
-#> 6 -0.21743628 0.1845138 0.33722480 10.10728 1.41481 1.08659 200.2634
+#> 1 0.148051420 0.06965373 0.24581707 40.09401 295.6217 18.14504
+#> 2 -0.020787382 0.06760295 0.31972821 40.09401 295.6217 18.14504
+#> 3 0.005025168 -0.06591651 -0.07580992 40.09401 295.6217 18.14504
+#> 4 0.002808463 0.06168375 0.02224114 40.09401 295.6217 18.14504
+#> 5 -0.001778236 0.03771896 0.02584761 40.09401 295.6217 18.14504
+#> 6 0.082541169 0.03786819 0.10218887 40.09401 295.6217 18.14504
+#> eta.Cl TKA eta.Ka Q Kin Kout EC50
+#> 1 0.38786341 0.1857857 -0.173919328 10.01157 1.005855 1.781983 199.6408
+#> 2 0.14026344 0.1857857 0.225097434 10.01157 1.005855 1.781983 199.6408
+#> 3 -0.08702708 0.1857857 0.411283938 10.01157 1.005855 1.781983 199.6408
+#> 4 -0.38496908 0.1857857 0.227279078 10.01157 1.005855 1.781983 199.6408
+#> 5 0.45289952 0.1857857 0.006090343 10.01157 1.005855 1.781983 199.6408
+#> 6 0.13416942 0.1857857 -0.052893417 10.01157 1.005855 1.781983 199.6408
#> sim.id id inv.Cl(inv==1) inv.Cl(inv==2) inv.Ka(inv==1) inv.Ka(inv==2)
-#> 1 2 1 -0.1381834 -0.07625591 -0.1147319 -0.1327589
-#> 2 2 2 -0.1381834 -0.07625591 -0.1147319 -0.1327589
-#> 3 2 3 -0.1381834 -0.07625591 -0.1147319 -0.1327589
-#> 4 2 4 -0.1381834 -0.07625591 -0.1147319 -0.1327589
-#> 5 2 5 -0.1381834 -0.07625591 -0.1147319 -0.1327589
-#> 6 2 6 -0.1381834 -0.07625591 -0.1147319 -0.1327589
+#> 1 2 1 0.001986868 0.2045951 -0.07730072 -0.09059694
+#> 2 2 2 0.001986868 0.2045951 -0.07730072 -0.09059694
+#> 3 2 3 0.001986868 0.2045951 -0.07730072 -0.09059694
+#> 4 2 4 0.001986868 0.2045951 -0.07730072 -0.09059694
+#> 5 2 5 0.001986868 0.2045951 -0.07730072 -0.09059694
+#> 6 2 6 0.001986868 0.2045951 -0.07730072 -0.09059694
#> eye.Cl(eye==1) eye.Cl(eye==2) eye.Ka(eye==1) eye.Ka(eye==2) iov.Cl(occ==1)
-#> 1 0.2269129 0.2581869 0.2798932 -0.02681279 -0.22890287
-#> 2 -0.2009005 -0.1696096 0.1474433 0.28535219 0.12983576
-#> 3 -0.3672459 -0.3987801 0.2564106 -0.07613422 -0.10691395
-#> 4 0.1755765 0.1995688 -0.1289375 0.12910869 -0.03148799
-#> 5 0.2309972 0.1180215 -0.2515939 -0.20469517 -0.04596325
-#> 6 0.1475438 0.1968126 0.2314342 -0.31494432 -0.04242763
-#> iov.Cl(occ==2) iov.Ka(occ==1) iov.Ka(occ==2) V2 V3 TCl
-#> 1 0.03418487 0.09613456 0.16156506 40.41229 297.3253 18.2318
-#> 2 -0.07748243 -0.19162629 -0.09772608 40.41229 297.3253 18.2318
-#> 3 0.11418462 0.04707450 0.16807478 40.41229 297.3253 18.2318
-#> 4 0.12375822 -0.03202817 0.20011273 40.41229 297.3253 18.2318
-#> 5 -0.10228126 0.07826439 0.22500170 40.41229 297.3253 18.2318
-#> 6 -0.10016671 -0.01462587 0.02336089 40.41229 297.3253 18.2318
-#> eta.Cl TKA eta.Ka Q Kin Kout EC50
-#> 1 -0.20086952 0.2333199 -0.0414174 10.72069 0.9786748 0.9991689 200.2193
-#> 2 0.11308182 0.2333199 -0.3548082 10.72069 0.9786748 0.9991689 200.2193
-#> 3 -0.36755955 0.2333199 0.1558984 10.72069 0.9786748 0.9991689 200.2193
-#> 4 -0.18393330 0.2333199 0.3091535 10.72069 0.9786748 0.9991689 200.2193
-#> 5 -0.02736961 0.2333199 -0.2065517 10.72069 0.9786748 0.9991689 200.2193
-#> 6 -0.31209212 0.2333199 -0.3761942 10.72069 0.9786748 0.9991689 200.2193
+#> 1 -0.10709761 0.28601847 -0.27271957 -0.25903852 -0.027814266
+#> 2 -0.10449928 -0.07056373 0.11189229 -0.26687317 -0.104948857
+#> 3 0.17425974 0.33925855 -0.12120111 -0.09546716 -0.035051731
+#> 4 -0.01581228 0.18438539 -0.51131389 -0.04098984 -0.009952889
+#> 5 0.16638326 -0.02882976 0.02979109 0.17039239 -0.074698671
+#> 6 -0.22401771 0.32229049 -0.03720356 0.02952642 -0.080734767
+#> iov.Cl(occ==2) iov.Ka(occ==1) iov.Ka(occ==2) V2 V3 TCl
+#> 1 -0.03138863 0.08441297 -0.03262962 40.14834 297.9576 18.20341
+#> 2 -0.24533363 0.12337983 0.08421487 40.14834 297.9576 18.20341
+#> 3 0.06999665 0.14882817 0.03111777 40.14834 297.9576 18.20341
+#> 4 -0.15914658 -0.09220504 -0.10809969 40.14834 297.9576 18.20341
+#> 5 -0.03274357 0.05611387 0.05903557 40.14834 297.9576 18.20341
+#> 6 -0.02216565 -0.01391522 0.03948332 40.14834 297.9576 18.20341
+#> eta.Cl TKA eta.Ka Q Kin Kout EC50
+#> 1 0.02279773 0.3299909 -0.18655563 10.81314 1.649013 0.3192288 200.2316
+#> 2 -0.17666623 0.3299909 0.05105939 10.81314 1.649013 0.3192288 200.2316
+#> 3 -0.25311782 0.3299909 -0.11943289 10.81314 1.649013 0.3192288 200.2316
+#> 4 0.59976414 0.3299909 -0.44235783 10.81314 1.649013 0.3192288 200.2316
+#> 5 -0.05830617 0.3299909 0.48535172 10.81314 1.649013 0.3192288 200.2316
+#> 6 -0.54775033 0.3299909 -0.28962686 10.81314 1.649013 0.3192288 200.2316
For between eye variability and between occasion variability each individual simulates a number of variables that become the between eye and between occasion variability; In the case of the eye:
diff --git a/articles/rxode2-plot_files/figure-html/unnamed-chunk-10-1.png b/articles/rxode2-plot_files/figure-html/unnamed-chunk-10-1.png index 7338c8003..c89de6b13 100644 Binary files a/articles/rxode2-plot_files/figure-html/unnamed-chunk-10-1.png and b/articles/rxode2-plot_files/figure-html/unnamed-chunk-10-1.png differ diff --git a/articles/rxode2-plot_files/figure-html/unnamed-chunk-6-1.png b/articles/rxode2-plot_files/figure-html/unnamed-chunk-6-1.png index b954465a7..7d273e95d 100644 Binary files a/articles/rxode2-plot_files/figure-html/unnamed-chunk-6-1.png and b/articles/rxode2-plot_files/figure-html/unnamed-chunk-6-1.png differ diff --git a/articles/rxode2-plot_files/figure-html/unnamed-chunk-7-1.png b/articles/rxode2-plot_files/figure-html/unnamed-chunk-7-1.png index b1555d6ee..fbaf3759f 100644 Binary files a/articles/rxode2-plot_files/figure-html/unnamed-chunk-7-1.png and b/articles/rxode2-plot_files/figure-html/unnamed-chunk-7-1.png differ diff --git a/articles/rxode2-plot_files/figure-html/unnamed-chunk-8-1.png b/articles/rxode2-plot_files/figure-html/unnamed-chunk-8-1.png index 8c5987101..bbd0b3ff4 100644 Binary files a/articles/rxode2-plot_files/figure-html/unnamed-chunk-8-1.png and b/articles/rxode2-plot_files/figure-html/unnamed-chunk-8-1.png differ diff --git a/articles/rxode2-prior-data.html b/articles/rxode2-prior-data.html index 09e5259eb..9bf9247f6 100644 --- a/articles/rxode2-prior-data.html +++ b/articles/rxode2-prior-data.html @@ -242,33 +242,33 @@
summary(mod1$simulationModel)
-#> rxode2 2.0.14.9000 model named rx_3db52194eb7226d83c8555109940bf90 model (✔ ready).
-#> DLL: /tmp/RtmpG6A6n6/rxode2/rx_3db52194eb7226d83c8555109940bf90__.rxd/rx_3db52194eb7226d83c8555109940bf90_.so
+#> rxode2 2.0.14.9000 model named rx_681ee960fe62742402698ea5729ab086 model (✔ ready).
+#> DLL: /tmp/RtmpFScia9/rxode2/rx_681ee960fe62742402698ea5729ab086__.rxd/rx_681ee960fe62742402698ea5729ab086_.so
#> NULL
#>
#> Calculated Variables:
@@ -281,8 +281,8 @@ A note about t
#> })
summary(mod1$simulationIniModel)
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_90dfb781eb7a2b58bc36489c28ba4170 model (✔ ready).
-#> DLL: /tmp/RtmpG6A6n6/rxode2/rx_90dfb781eb7a2b58bc36489c28ba4170__.rxd/rx_90dfb781eb7a2b58bc36489c28ba4170_.so
+#> rxode2 2.0.14.9000 model named rx_aab532129b3bdda125abca8b1b5d38b6 model (✔ ready).
+#> DLL: /tmp/RtmpFScia9/rxode2/rx_aab532129b3bdda125abca8b1b5d38b6__.rxd/rx_aab532129b3bdda125abca8b1b5d38b6_.so
#> NULL
#>
#> Calculated Variables:
@@ -308,8 +308,8 @@ A note about t
#> })
summary(mod2$simulationModel)
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_65a417b472870474db4a0697fcb95aee model (✔ ready).
-#> DLL: /tmp/RtmpG6A6n6/rxode2/rx_65a417b472870474db4a0697fcb95aee__.rxd/rx_65a417b472870474db4a0697fcb95aee_.so
+#> rxode2 2.0.14.9000 model named rx_ea3e0ddd0ac2c9081602c0a652dd1d0b model (✔ ready).
+#> DLL: /tmp/RtmpFScia9/rxode2/rx_ea3e0ddd0ac2c9081602c0a652dd1d0b__.rxd/rx_ea3e0ddd0ac2c9081602c0a652dd1d0b_.so
#> NULL
#>
#> Calculated Variables:
@@ -365,8 +365,8 @@ A note about t
#> })
summary(mod2$simulationIniModel)
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_54cbbfad6ad14a3e7e87c2ad66f30d45 model (✔ ready).
-#> DLL: /tmp/RtmpG6A6n6/rxode2/rx_54cbbfad6ad14a3e7e87c2ad66f30d45__.rxd/rx_54cbbfad6ad14a3e7e87c2ad66f30d45_.so
+#> rxode2 2.0.14.9000 model named rx_09f8a4a73e98c2930e9b942212c58dc1 model (✔ ready).
+#> DLL: /tmp/RtmpFScia9/rxode2/rx_09f8a4a73e98c2930e9b942212c58dc1__.rxd/rx_09f8a4a73e98c2930e9b942212c58dc1_.so
#> NULL
#>
#> Calculated Variables:
@@ -552,10 +552,10 @@ Compare the times between all
print(bench)
#> Unit: milliseconds
#> expr min lq mean median uq max
-#> runFor() 271.12972 276.67950 289.11109 279.70390 286.03731 446.06617
-#> runSapply() 272.23359 277.92463 285.46407 280.02252 282.28206 334.06174
-#> runSingleThread() 29.13699 29.36107 30.10626 29.53718 29.83150 47.24153
-#> run2Thread() 17.12262 17.47965 19.08089 17.68412 18.22007 29.85472
+#> runFor() 267.00796 272.31696 283.74884 274.28839 278.11932 412.33897
+#> runSapply() 268.19887 273.04343 281.91052 274.96828 280.66443 324.29213
+#> runSingleThread() 26.94761 27.13836 27.96019 27.23802 27.45841 53.41421
+#> run2Thread() 15.89870 16.17621 17.38782 16.34154 16.86491 29.45720
#> neval
#> 100
#> 100
@@ -582,10 +582,10 @@ Compare the times between all
print(bench)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
-#> runThread(1) 29.12487 29.43899 30.58305 30.71440 30.92168 44.55127 100
-#> runThread(2) 17.20634 17.49846 19.80544 18.10535 18.60669 31.77304 100
-#> runThread(3) 18.93741 20.09896 20.76630 20.24559 20.99026 26.60115 100
-#> runThread(4) 16.59801 17.00669 19.51821 17.49137 17.87127 39.42654 100
autoplot(bench)
By applying some of the new parallel solving concepts you can simply run the same simulation both with less code and faster:
@@ -716,7 +716,7 @@A real life exampleres <- rxSolve(rx, ev, omega=omega, returnType="data.table") endParallel <- Sys.time() print(endParallel - startParallel) -#> Time difference of 0.1396136 secs
You can see a striking time difference between the two methods; A few things to keep in mind:
## using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
summary(Vtpol)
## rxode2 2.0.14.9000 model named rx_c05195f423e3220f71a614f5fab50a25 model (ready).
-## DLL: /tmp/RtmpG6A6n6/rxode2/rx_c05195f423e3220f71a614f5fab50a25__.rxd/rx_c05195f423e3220f71a614f5fab50a25_.so
+## rxode2 2.0.14.9000 model named rx_f8b9fe0590759a39853154fca41011b9 model (ready).
+## DLL: /tmp/RtmpFScia9/rxode2/rx_f8b9fe0590759a39853154fca41011b9__.rxd/rx_f8b9fe0590759a39853154fca41011b9_.so
## NULL
## -- rxode2 Model Syntax --
## rxode2({
diff --git a/articles/rxode2-syntax.html b/articles/rxode2-syntax.html
index c8afd9654..6e4ae765f 100644
--- a/articles/rxode2-syntax.html
+++ b/articles/rxode2-syntax.html
@@ -278,7 +278,7 @@ Creating rxode2 models
mod$simulationModel
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_1eb11bdbc53aabad075c1318619d9fe3 model (✔ ready).
+#> rxode2 2.0.14.9000 model named rx_5df7c29dba18e1f475ba92538be374ea model (✔ ready).
#> x$state: depot, center
#> x$stateExtra: cp
#> x$params: tka, tcl, tv, add.sd, eta.ka, eta.cl, eta.v, rxerr.cp
@@ -287,7 +287,7 @@ Creating rxode2 models# or
mod$simulationIniModel
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_9fe88e4b34f46ef88e20ceb6ae68fc17 model (✔ ready).
+#> rxode2 2.0.14.9000 model named rx_fe59aaf43e4eab2b877b96f7be3f781f model (✔ ready).
#> x$state: depot, center
#> x$stateExtra: cp
#> x$params: tka, tcl, tv, add.sd, eta.ka, eta.cl, eta.v, rxerr.cp
@@ -456,8 +456,8 @@ Supported functionsrxSupportedFuns()
.
A brief description of the built-in functions are in the following
table:
-
-Note that lag(cmt) =
is equivalent to
+
+Note that lag(cmt) =
is equivalent to
alag(cmt) =
and not the same as = lag(wt)
-Note that rxFlag
will always output 11
or
+
+Note that rxFlag
will always output 11
or
calc_lhs
since that is where the final variables are
calculated, though you can tweak or test certain parts of
rxode2
by using this flag.
@@ -497,8 +497,8 @@ TransformationsFor normal and related distributions, you can apply the
transformation on both sides by using some keywords/functions to apply
these transformations.
-
-By default for the likelihood for all of these transformations is
+
+By default for the likelihood for all of these transformations is
calculated on the untransformed scale.
For bounded variables like logit-normal or probit-normal the low and
high values are defaulted to 0 and 1 if missing.
@@ -517,8 +517,8 @@ Normal and t-related distributionsnlmixr2
:
-
-Note that with the normal and t-related distributions
+
+Note that with the normal and t-related distributions
nlmixr2
will calculate cwres
and
npde
under the normal assumption to help assess the
goodness of the fit of the model.
@@ -636,8 +636,8 @@ General table of supp
In general all the that are supported are in the following table
(available in rxode2::rxResidualError
)
-
-
+
+
diff --git a/pkgdown.yml b/pkgdown.yml
index 3dda489a7..a82b85026 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -26,7 +26,7 @@ articles:
rxode2-transit-compartments: rxode2-transit-compartments.html
rxode2-tutorials: rxode2-tutorials.html
rxode2-wt: rxode2-wt.html
-last_built: 2023-11-30T01:15Z
+last_built: 2023-11-30T01:31Z
urls:
reference: https://nlmixr2.github.io/rxode2/reference
article: https://nlmixr2.github.io/rxode2/articles
diff --git a/reference/binomProbs.html b/reference/binomProbs.html
index bac3a098f..d4c801d8d 100644
--- a/reference/binomProbs.html
+++ b/reference/binomProbs.html
@@ -282,21 +282,21 @@ Examplesx<- rbinom(7001, p=0.375, size=1)
binomProbs(x)
#> 2.5% 5% 50% 95% 97.5%
-#> 0.3483595 0.3501427 0.3595201 0.3690059 0.3708347
+#> 0.3527552 0.3545439 0.3639480 0.3734572 0.3752900
# you can also use the prediction interval
# \donttest{
binomProbs(x, pred=TRUE)
#> 2.5% 5% 50% 95% 97.5%
-#> 0.3438080 0.3462363 0.3595201 0.3729467 0.3755178
+#> 0.3480931 0.3506642 0.3639480 0.3773747 0.3799457
# }
# Can get some extra statistics if you request onlyProbs=FALSE
binomProbs(x, onlyProbs=FALSE)
#> mean var sd n 2.5% 5%
-#> 0.3595201 0.2302654 0.4798598 7001.0000000 0.3483595 0.3501427
+#> 0.3639480 0.2314899 0.4811339 7001.0000000 0.3527552 0.3545439
#> 50% 95% 97.5%
-#> 0.3595201 0.3690059 0.3708347
+#> 0.3639480 0.3734572 0.3752900
x[2] <- NA_real_
@@ -306,7 +306,7 @@ Examples
binomProbs(x, na.rm=TRUE)
#> 2.5% 5% 50% 95% 97.5%
-#> 0.3484097 0.3501931 0.3595714 0.3690582 0.3708872
+#> 0.3528060 0.3545950 0.3640000 0.3735101 0.3753432
diff --git a/reference/dot-rxWithWd.html b/reference/dot-rxWithWd.html
index 5b7e42d6d..6cd507171 100644
--- a/reference/dot-rxWithWd.html
+++ b/reference/dot-rxWithWd.html
@@ -161,7 +161,7 @@ Examples.rxWithWd(tempdir(), {
getwd()
})
-#> [1] "/tmp/RtmpG6A6n6"
+#> [1] "/tmp/RtmpFScia9"
getwd()
#> [1] "/home/runner/work/rxode2/rxode2/docs/reference"
diff --git a/reference/meanProbs.html b/reference/meanProbs.html
index a017f1d78..d9d62717c 100644
--- a/reference/meanProbs.html
+++ b/reference/meanProbs.html
@@ -242,19 +242,19 @@ Examples
quantile(x<- rnorm(1001))
#> 0% 25% 50% 75% 100%
-#> -2.97323949 -0.73533239 -0.01129805 0.72491996 3.27777284
+#> -3.71893787 -0.69373375 -0.05187577 0.58492328 3.45298651
meanProbs(x)
-#> 0% 25% 50% 75% 100%
-#> -2.9732394937 -0.0449769963 -0.0226253316 -0.0002736669 3.2777728424
+#> 0% 25% 50% 75% 100%
+#> -3.71893787 -0.06961692 -0.04840601 -0.02719510 3.45298651
# Can get some extra statistics if you request onlyProbs=FALSE
meanProbs(x, onlyProbs=FALSE)
#> mean var sd min max
-#> -2.262533e-02 1.098467e+00 1.048078e+00 -2.973239e+00 3.277773e+00
+#> -0.04840601 0.98920426 0.99458748 -3.71893787 3.45298651
#> n 0% 25% 50% 75%
-#> 1.001000e+03 -2.973239e+00 -4.497700e-02 -2.262533e-02 -2.736669e-04
+#> 1001.00000000 -3.71893787 -0.06961692 -0.04840601 -0.02719510
#> 100%
-#> 3.277773e+00
+#> 3.45298651
x[2] <- NA_real_
@@ -263,16 +263,16 @@ Examples#> NA NA NA NA NA NA NA NA NA NA NA
quantile(x<- rnorm(42))
-#> 0% 25% 50% 75% 100%
-#> -2.4618924 -0.4784656 0.1486266 0.7796569 2.0551184
+#> 0% 25% 50% 75% 100%
+#> -2.06190470 -0.66292985 -0.05680753 0.55950520 2.48142495
meanProbs(x)
-#> 0% 25% 50% 75% 100%
-#> -2.461892403 -0.008671441 0.095665292 0.200002026 2.055118383
+#> 0% 25% 50% 75% 100%
+#> -2.06190470 -0.17689334 -0.08252131 0.01185072 2.48142495
meanProbs(x, useT=FALSE)
-#> 0% 25% 50% 75% 100%
-#> -2.461892403 -0.007746777 0.095665292 0.199077362 2.055118383
+#> 0% 25% 50% 75% 100%
+#> -2.06190470 -0.17605699 -0.08252131 0.01101436 2.48142495
diff --git a/reference/myapp/mod1.d/7ed99b8cb8cc62cfc95814a28f635541.md5 b/reference/myapp/mod1.d/7ed99b8cb8cc62cfc95814a28f635541.md5
new file mode 100644
index 000000000..8a5809ff2
--- /dev/null
+++ b/reference/myapp/mod1.d/7ed99b8cb8cc62cfc95814a28f635541.md5
@@ -0,0 +1 @@
+rxode2
diff --git a/reference/myapp/mod1.d/mod1_.c b/reference/myapp/mod1.d/mod1_.c
index 8e096d865..83e79bfe7 100644
--- a/reference/myapp/mod1.d/mod1_.c
+++ b/reference/myapp/mod1.d/mod1_.c
@@ -1,119 +1,119 @@
-#define _getRxSolve_ _rxmod1_eeb51ce336d3cc61649e2cfe6839886e0
-#define _evalUdf _rxmod1_eeb51ce336d3cc61649e2cfe6839886e1
-#define _solveData _rxmod1_eeb51ce336d3cc61649e2cfe6839886e2
-#define _assign_ptr _rxmod1_eeb51ce336d3cc61649e2cfe6839886e3
-#define _rxRmModelLib _rxmod1_eeb51ce336d3cc61649e2cfe6839886e4
-#define _rxGetModelLib _rxmod1_eeb51ce336d3cc61649e2cfe6839886e5
-#define _old_c _rxmod1_eeb51ce336d3cc61649e2cfe6839886e6
-#define _ptrid _rxmod1_eeb51ce336d3cc61649e2cfe6839886e7
-#define _rxIsCurrentC _rxmod1_eeb51ce336d3cc61649e2cfe6839886e8
-#define _sumPS _rxmod1_eeb51ce336d3cc61649e2cfe6839886e9
-#define _prodPS _rxmod1_eeb51ce336d3cc61649e2cfe6839886e10
-#define _prodType _rxmod1_eeb51ce336d3cc61649e2cfe6839886e11
-#define _sumType _rxmod1_eeb51ce336d3cc61649e2cfe6839886e12
-#define _update_par_ptr _rxmod1_eeb51ce336d3cc61649e2cfe6839886e13
-#define _getParCov _rxmod1_eeb51ce336d3cc61649e2cfe6839886e14
-#define _rxode2_rxAssignPtr _rxmod1_eeb51ce336d3cc61649e2cfe6839886e15
-#define _rxQr _rxmod1_eeb51ce336d3cc61649e2cfe6839886e16
-#define _compareFactorVal _rxmod1_eeb51ce336d3cc61649e2cfe6839886e17
-#define _sum _rxmod1_eeb51ce336d3cc61649e2cfe6839886e18
-#define _udf _rxmod1_eeb51ce336d3cc61649e2cfe6839886e19
-#define _sign _rxmod1_eeb51ce336d3cc61649e2cfe6839886e20
-#define _prod _rxmod1_eeb51ce336d3cc61649e2cfe6839886e21
-#define _max _rxmod1_eeb51ce336d3cc61649e2cfe6839886e22
-#define _min _rxmod1_eeb51ce336d3cc61649e2cfe6839886e23
-#define _transit4P _rxmod1_eeb51ce336d3cc61649e2cfe6839886e24
-#define _transit3P _rxmod1_eeb51ce336d3cc61649e2cfe6839886e25
-#define _assignFuns0 _rxmod1_eeb51ce336d3cc61649e2cfe6839886e26
-#define _assignFuns _rxmod1_eeb51ce336d3cc61649e2cfe6839886e27
-#define _rxord _rxmod1_eeb51ce336d3cc61649e2cfe6839886e28
-#define __assignFuns2 _rxmod1_eeb51ce336d3cc61649e2cfe6839886e29
-#define _llikCauchyDscale _rxmod1_eeb51ce336d3cc61649e2cfe6839886e30
-#define _llikCauchyDlocation _rxmod1_eeb51ce336d3cc61649e2cfe6839886e31
-#define _llikCauchy _rxmod1_eeb51ce336d3cc61649e2cfe6839886e32
-#define _llikGammaDrate _rxmod1_eeb51ce336d3cc61649e2cfe6839886e33
-#define _llikGammaDshape _rxmod1_eeb51ce336d3cc61649e2cfe6839886e34
-#define _llikGamma _rxmod1_eeb51ce336d3cc61649e2cfe6839886e35
-#define _llikWeibullDscale _rxmod1_eeb51ce336d3cc61649e2cfe6839886e36
-#define _llikWeibullDshape _rxmod1_eeb51ce336d3cc61649e2cfe6839886e37
-#define _llikWeibull _rxmod1_eeb51ce336d3cc61649e2cfe6839886e38
-#define _llikUnifDbeta _rxmod1_eeb51ce336d3cc61649e2cfe6839886e39
-#define _llikUnifDalpha _rxmod1_eeb51ce336d3cc61649e2cfe6839886e40
-#define _llikUnif _rxmod1_eeb51ce336d3cc61649e2cfe6839886e41
-#define _llikGeomDp _rxmod1_eeb51ce336d3cc61649e2cfe6839886e42
-#define _llikGeom _rxmod1_eeb51ce336d3cc61649e2cfe6839886e43
-#define _llikFDdf2 _rxmod1_eeb51ce336d3cc61649e2cfe6839886e44
-#define _llikFDdf1 _rxmod1_eeb51ce336d3cc61649e2cfe6839886e45
-#define _llikF _rxmod1_eeb51ce336d3cc61649e2cfe6839886e46
-#define _llikExpDrate _rxmod1_eeb51ce336d3cc61649e2cfe6839886e47
-#define _llikExp _rxmod1_eeb51ce336d3cc61649e2cfe6839886e48
-#define _llikChisqDdf _rxmod1_eeb51ce336d3cc61649e2cfe6839886e49
-#define _llikChisq _rxmod1_eeb51ce336d3cc61649e2cfe6839886e50
-#define _llikTDsd _rxmod1_eeb51ce336d3cc61649e2cfe6839886e51
-#define _llikTDmean _rxmod1_eeb51ce336d3cc61649e2cfe6839886e52
-#define _llikTDdf _rxmod1_eeb51ce336d3cc61649e2cfe6839886e53
-#define _llikT _rxmod1_eeb51ce336d3cc61649e2cfe6839886e54
-#define _llikBetaDshape2 _rxmod1_eeb51ce336d3cc61649e2cfe6839886e55
-#define _llikBetaDshape1 _rxmod1_eeb51ce336d3cc61649e2cfe6839886e56
-#define _llikBeta _rxmod1_eeb51ce336d3cc61649e2cfe6839886e57
-#define _llikNbinomMuDmu _rxmod1_eeb51ce336d3cc61649e2cfe6839886e58
-#define _llikNbinomMu _rxmod1_eeb51ce336d3cc61649e2cfe6839886e59
-#define _llikNbinomDprob _rxmod1_eeb51ce336d3cc61649e2cfe6839886e60
-#define _llikNbinom _rxmod1_eeb51ce336d3cc61649e2cfe6839886e61
-#define _llikBinomDprob _rxmod1_eeb51ce336d3cc61649e2cfe6839886e62
-#define _llikBinom _rxmod1_eeb51ce336d3cc61649e2cfe6839886e63
-#define _llikPoisDlambda _rxmod1_eeb51ce336d3cc61649e2cfe6839886e64
-#define _llikPois _rxmod1_eeb51ce336d3cc61649e2cfe6839886e65
-#define _llikNormDsd _rxmod1_eeb51ce336d3cc61649e2cfe6839886e66
-#define _llikNormDmean _rxmod1_eeb51ce336d3cc61649e2cfe6839886e67
-#define _llikNorm _rxmod1_eeb51ce336d3cc61649e2cfe6839886e68
-#define simeps _rxmod1_eeb51ce336d3cc61649e2cfe6839886e69
-#define simeta _rxmod1_eeb51ce336d3cc61649e2cfe6839886e70
-#define expit _rxmod1_eeb51ce336d3cc61649e2cfe6839886e71
-#define logit _rxmod1_eeb51ce336d3cc61649e2cfe6839886e72
-#define gammapDer _rxmod1_eeb51ce336d3cc61649e2cfe6839886e73
-#define lowergamma _rxmod1_eeb51ce336d3cc61649e2cfe6839886e74
-#define uppergamma _rxmod1_eeb51ce336d3cc61649e2cfe6839886e75
-#define gammaqInva _rxmod1_eeb51ce336d3cc61649e2cfe6839886e76
-#define gammaqInv _rxmod1_eeb51ce336d3cc61649e2cfe6839886e77
-#define gammapInva _rxmod1_eeb51ce336d3cc61649e2cfe6839886e78
-#define gammapInv _rxmod1_eeb51ce336d3cc61649e2cfe6839886e79
-#define gammaq _rxmod1_eeb51ce336d3cc61649e2cfe6839886e80
-#define gammap _rxmod1_eeb51ce336d3cc61649e2cfe6839886e81
-#define phi _rxmod1_eeb51ce336d3cc61649e2cfe6839886e82
-#define riweibull _rxmod1_eeb51ce336d3cc61649e2cfe6839886e83
-#define riunif _rxmod1_eeb51ce336d3cc61649e2cfe6839886e84
-#define rit_ _rxmod1_eeb51ce336d3cc61649e2cfe6839886e85
-#define ripois _rxmod1_eeb51ce336d3cc61649e2cfe6839886e86
-#define ribeta _rxmod1_eeb51ce336d3cc61649e2cfe6839886e87
-#define rigamma _rxmod1_eeb51ce336d3cc61649e2cfe6839886e88
-#define rigeom _rxmod1_eeb51ce336d3cc61649e2cfe6839886e89
-#define rif _rxmod1_eeb51ce336d3cc61649e2cfe6839886e90
-#define riexp _rxmod1_eeb51ce336d3cc61649e2cfe6839886e91
-#define richisq _rxmod1_eeb51ce336d3cc61649e2cfe6839886e92
-#define ricauchy _rxmod1_eeb51ce336d3cc61649e2cfe6839886e93
-#define rinbinomMu _rxmod1_eeb51ce336d3cc61649e2cfe6839886e94
-#define rinbinom _rxmod1_eeb51ce336d3cc61649e2cfe6839886e95
-#define ribinom _rxmod1_eeb51ce336d3cc61649e2cfe6839886e96
-#define rinorm _rxmod1_eeb51ce336d3cc61649e2cfe6839886e97
-#define rxweibull _rxmod1_eeb51ce336d3cc61649e2cfe6839886e98
-#define rxunif _rxmod1_eeb51ce336d3cc61649e2cfe6839886e99
-#define rxt_ _rxmod1_eeb51ce336d3cc61649e2cfe6839886e100
-#define rxpois _rxmod1_eeb51ce336d3cc61649e2cfe6839886e101
-#define rxbeta _rxmod1_eeb51ce336d3cc61649e2cfe6839886e102
-#define rxgamma _rxmod1_eeb51ce336d3cc61649e2cfe6839886e103
-#define rxgeom _rxmod1_eeb51ce336d3cc61649e2cfe6839886e104
-#define rxf _rxmod1_eeb51ce336d3cc61649e2cfe6839886e105
-#define rxexp _rxmod1_eeb51ce336d3cc61649e2cfe6839886e106
-#define rxchisq _rxmod1_eeb51ce336d3cc61649e2cfe6839886e107
-#define rxcauchy _rxmod1_eeb51ce336d3cc61649e2cfe6839886e108
-#define rxnbinomMu _rxmod1_eeb51ce336d3cc61649e2cfe6839886e109
-#define rxnbinom _rxmod1_eeb51ce336d3cc61649e2cfe6839886e110
-#define rxbinom _rxmod1_eeb51ce336d3cc61649e2cfe6839886e111
-#define rxnorm _rxmod1_eeb51ce336d3cc61649e2cfe6839886e112
-#define linCmtC _rxmod1_eeb51ce336d3cc61649e2cfe6839886e113
-#define linCmtB _rxmod1_eeb51ce336d3cc61649e2cfe6839886e114
-#define linCmtA _rxmod1_eeb51ce336d3cc61649e2cfe6839886e115
+#define _getRxSolve_ _rxmod1_aab463ad54a60f2c5aafb9d3ccf791430
+#define _evalUdf _rxmod1_aab463ad54a60f2c5aafb9d3ccf791431
+#define _solveData _rxmod1_aab463ad54a60f2c5aafb9d3ccf791432
+#define _assign_ptr _rxmod1_aab463ad54a60f2c5aafb9d3ccf791433
+#define _rxRmModelLib _rxmod1_aab463ad54a60f2c5aafb9d3ccf791434
+#define _rxGetModelLib _rxmod1_aab463ad54a60f2c5aafb9d3ccf791435
+#define _old_c _rxmod1_aab463ad54a60f2c5aafb9d3ccf791436
+#define _ptrid _rxmod1_aab463ad54a60f2c5aafb9d3ccf791437
+#define _rxIsCurrentC _rxmod1_aab463ad54a60f2c5aafb9d3ccf791438
+#define _sumPS _rxmod1_aab463ad54a60f2c5aafb9d3ccf791439
+#define _prodPS _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914310
+#define _prodType _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914311
+#define _sumType _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914312
+#define _update_par_ptr _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914313
+#define _getParCov _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914314
+#define _rxode2_rxAssignPtr _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914315
+#define _rxQr _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914316
+#define _compareFactorVal _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914317
+#define _sum _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914318
+#define _udf _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914319
+#define _sign _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914320
+#define _prod _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914321
+#define _max _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914322
+#define _min _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914323
+#define _transit4P _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914324
+#define _transit3P _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914325
+#define _assignFuns0 _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914326
+#define _assignFuns _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914327
+#define _rxord _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914328
+#define __assignFuns2 _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914329
+#define _llikCauchyDscale _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914330
+#define _llikCauchyDlocation _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914331
+#define _llikCauchy _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914332
+#define _llikGammaDrate _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914333
+#define _llikGammaDshape _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914334
+#define _llikGamma _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914335
+#define _llikWeibullDscale _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914336
+#define _llikWeibullDshape _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914337
+#define _llikWeibull _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914338
+#define _llikUnifDbeta _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914339
+#define _llikUnifDalpha _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914340
+#define _llikUnif _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914341
+#define _llikGeomDp _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914342
+#define _llikGeom _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914343
+#define _llikFDdf2 _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914344
+#define _llikFDdf1 _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914345
+#define _llikF _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914346
+#define _llikExpDrate _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914347
+#define _llikExp _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914348
+#define _llikChisqDdf _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914349
+#define _llikChisq _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914350
+#define _llikTDsd _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914351
+#define _llikTDmean _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914352
+#define _llikTDdf _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914353
+#define _llikT _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914354
+#define _llikBetaDshape2 _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914355
+#define _llikBetaDshape1 _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914356
+#define _llikBeta _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914357
+#define _llikNbinomMuDmu _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914358
+#define _llikNbinomMu _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914359
+#define _llikNbinomDprob _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914360
+#define _llikNbinom _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914361
+#define _llikBinomDprob _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914362
+#define _llikBinom _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914363
+#define _llikPoisDlambda _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914364
+#define _llikPois _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914365
+#define _llikNormDsd _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914366
+#define _llikNormDmean _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914367
+#define _llikNorm _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914368
+#define simeps _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914369
+#define simeta _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914370
+#define expit _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914371
+#define logit _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914372
+#define gammapDer _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914373
+#define lowergamma _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914374
+#define uppergamma _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914375
+#define gammaqInva _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914376
+#define gammaqInv _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914377
+#define gammapInva _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914378
+#define gammapInv _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914379
+#define gammaq _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914380
+#define gammap _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914381
+#define phi _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914382
+#define riweibull _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914383
+#define riunif _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914384
+#define rit_ _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914385
+#define ripois _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914386
+#define ribeta _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914387
+#define rigamma _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914388
+#define rigeom _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914389
+#define rif _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914390
+#define riexp _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914391
+#define richisq _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914392
+#define ricauchy _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914393
+#define rinbinomMu _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914394
+#define rinbinom _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914395
+#define ribinom _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914396
+#define rinorm _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914397
+#define rxweibull _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914398
+#define rxunif _rxmod1_aab463ad54a60f2c5aafb9d3ccf7914399
+#define rxt_ _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143100
+#define rxpois _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143101
+#define rxbeta _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143102
+#define rxgamma _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143103
+#define rxgeom _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143104
+#define rxf _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143105
+#define rxexp _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143106
+#define rxchisq _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143107
+#define rxcauchy _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143108
+#define rxnbinomMu _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143109
+#define rxnbinom _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143110
+#define rxbinom _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143111
+#define rxnorm _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143112
+#define linCmtC _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143113
+#define linCmtB _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143114
+#define linCmtA _rxmod1_aab463ad54a60f2c5aafb9d3ccf79143115
#include
#define __MAX_PROD__ 0
#define _CMT CMT
@@ -684,9 +684,9 @@ extern SEXP mod1__model_vars(void){
SEXP _mv = PROTECT(_rxGetModelLib("mod1__model_vars"));pro++;
if (!_rxIsCurrentC(_mv)){
SEXP hash = PROTECT(allocVector(STRSXP, 1));pro++;
-#define __doBuf__ snprintf(buf, __doBufN__, "un]\"BAAA@QRtHACAAAAAAABtzAAAv7#aT)^X1%%MAI<%%,ft~kaBaiiqAAp1aE=8c7l%%1)|e8!L*mbZj~/Xjy2ID6S.obf>mXTO}OH(fPQC~%%sh=yp2pzD4\"B,(ALDTX&a{arDVcG:lJtnE8S~g(t}#l9(dn@t>mpY*)8%%/s4A={[}M!9SUW2D_)EZCxi*E(:\?ku7p@h.sY&(k_HOSKChpM*wkZ*e]JY>`wF+b;|\"|JOf({LT_Fw^Qma.!XU@h<[/gBWQZz]W2[e0ZUtZ#[OYUA*/&t8z\"kR$t#L6S3+BHJY)Uee,;`(UK;\?V3\"v;CQEXtdCs;LVF}|whtuZHj}>)~0J(5#.5\"_e,^sS(oE2e/+bAyhLf@u\?InV&3$Fqq@U4P~*<1)/A.paHj9.DEkZg@BaC4q@3}wYWs#6`l*kG:%%c%%b\";;\?Q#jM,o9N+z,2^l)Xf}z2,vV/}mob[G/[1N#[mQ~w[fLFG1c2}HyzV9|]&`T[3cRd=q`t`s;Dh{T|aGz8}A}_taDR;6)wnM];;3~6={2V~wVzs{_.1%%&q6RkRPgUPr9gBhC;.\?]W!F@hH;r2WRl:W^n3:c)%%1LS~jCS32PfzA1B+a}7jF)A%%d(78MadSa(1MR}Qbz+z}(Kfh!q3W`c%%S|S=q^`hRT|[(U1bi=lYf0@{=Xqpt{e_m7,mv(!4\"DOaDOVZFd^<[qR=Q}.7ZUQ<8K@~9(uW0z!&M\"fB[GGX{R:a$Wlz`&CoUF:qX1Wr(hoH/`=oCw3h[54x:5DA9dNflXpVOK,C.=h1|HCf*RORknM4a1_e8}*J`i4oFnMvL<;B!OZghV^^>XT;!\"5mK0vnSKf\"dVZ_&+qS3oTK(=OX@v33B/$HzP0v+tbTd\?N^jl31ZVATvajp1mGK5PbjD0gJtfv_!gK&qku1Rp1G3XeZc(jgjHe7rEU{Q8c]KJ2S=/wQ{h#\"CjSLfP\?^FY7`)w+MX;IGbq4uu2%%0LqS|]/5LAl7rzv2Si&:q@d0&,5@dIL,hbW8m_X$7W`Nl&mt`5r$4x(rVLjZBE@hE)M.Jd7~ARP}3jW*v]{\"&b8U553g90m3Ke!@9J8@#ee3]3\"89(A:R.scc{=NLtyA&t>Wc/^XHo\"\"X>Seo+#>ITV*^ssvg4G&k<~PI&,FGPIPx|ZT&R@SkfG[+/I@Q[>&@`vXz9C#><+>y;$oh\"Vx=:z@a7u&}[d:)u=crD}l,Zu[8r3B2gn{7{MQG<9|3d9~]##/Pt^Ec()P[9N@9EO:Ob%%O\"V1^Cb*o[iyIo0/leTr0)Te.qTzU[8v%%LGM[V4gm>sB4g8G:G4x`HNz`Hy&M,kwW\"`~ZBB}+Rnb5.MqX/Mhx}TyjgSu#5wCJ6ymu1cv]_XXLnqs\"}kWcWJbI@CPVmk4OxFWP2$ab9T_~Gon8{F~/CM&hv.qtM9229\?Vry&d(W}UL^+NA:G`#i6ws5r:Oh8V4,$5834o2zw9@)|5CMAu0j^`A+KL3sEz1ri3BRzl`Py.po.}%%^;@~x7Y4,4LY<}DN[koMdAd5L*VH3[W[WWS]@#M)G0UvKtA~W&j(N\?N>lJ5W0An32U$l|Z}ILyN5Ga\?1_+yc|7qL/<8");
+ char buf[1048];
+#define __doBufN__ 1048
__doBuf__
#undef __doBuf__
#undef __doBufN__
diff --git a/reference/myapp/mod1.d/mod1_.o b/reference/myapp/mod1.d/mod1_.o
index 4f1369069..9b7e0627d 100644
Binary files a/reference/myapp/mod1.d/mod1_.o and b/reference/myapp/mod1.d/mod1_.o differ
diff --git a/reference/myapp/mod1.d/mod1_.so b/reference/myapp/mod1.d/mod1_.so
index 69dd0677a..31995f4a0 100755
Binary files a/reference/myapp/mod1.d/mod1_.so and b/reference/myapp/mod1.d/mod1_.so differ
diff --git a/reference/myapp/rx_shiny_data.rda b/reference/myapp/rx_shiny_data.rda
index 1b2cf66b1..76a207833 100644
Binary files a/reference/myapp/rx_shiny_data.rda and b/reference/myapp/rx_shiny_data.rda differ
diff --git a/reference/rxCombineErrorLines.html b/reference/rxCombineErrorLines.html
index 729d38451..cf5a85f5c 100644
--- a/reference/rxCombineErrorLines.html
+++ b/reference/rxCombineErrorLines.html
@@ -382,7 +382,7 @@ Examples#>
#>
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_a9af130766b47d61301e298427b02165 model (✔ ready).
+#> rxode2 2.0.14.9000 model named rx_d5aaeae76f481b8bb479a8771013e2ba model (✔ ready).
#> $state: depot, gut, center, effect
#> $stateExtra: cp
#> $params: tktr, tka, tcl, tv, prop.err, pkadd.err, temax, tec50, tkout, te0, pdadd.err, eta.ktr, eta.ka, eta.cl, eta.v, eta.emax, eta.ec50, eta.kout, eta.e0, CMT, rxerr.cp, rxerr.effect
diff --git a/reference/rxExpandGrid.html b/reference/rxExpandGrid.html
index e2550f557..58cbb8a39 100644
--- a/reference/rxExpandGrid.html
+++ b/reference/rxExpandGrid.html
@@ -858,12 +858,12 @@ Examples# \donttest{
microbenchmark::microbenchmark(rxExpandGrid(letters, letters), expand.grid.jc(letters, letters))
#> Unit: microseconds
-#> expr min lq mean median uq
-#> rxExpandGrid(letters, letters) 11.592 12.784 13.76299 13.405 14.006
-#> expand.grid.jc(letters, letters) 15.239 17.092 131.56091 18.008 19.136
+#> expr min lq mean median uq
+#> rxExpandGrid(letters, letters) 11.892 13.290 60.56158 13.976 14.6975
+#> expand.grid.jc(letters, letters) 16.070 17.848 79.97464 19.812 21.5000
#> max neval
-#> 36.718 100
-#> 5461.767 100
+#> 4665.988 100
+#> 3647.088 100
# }
diff --git a/reference/rxPp.html b/reference/rxPp.html
index 54fb6bc06..a3ea0343b 100644
--- a/reference/rxPp.html
+++ b/reference/rxPp.html
@@ -205,13 +205,13 @@
## Sample homogenous Poisson process of rate 1/10
rxPp(10, 1 / 10)
-#> [1] 11.91444 17.83410 35.86940 43.33875 52.17679 58.01848 61.61956 67.58865
-#> [9] 75.75432 80.50742
+#> [1] 7.859885 16.372945 16.924719 27.094809 28.365512 40.319870 45.365193
+#> [8] 52.139651 65.929177 66.758080
## Sample inhomogenous Poisson rate of 1/10
rxPp(10, 1 / 10, gamma = 2, tmax = 100)
-#> [1] 27.11790 29.33779 47.21930 81.03344 90.81621 94.61763 100.00000
+#> [1] 60.23075 60.33377 65.65601 93.97049 98.34922 100.00000 100.00000
#> [8] 100.00000 100.00000 100.00000
## Typically the Poisson process times are in a sequential order,
@@ -225,8 +225,8 @@ ExamplesrxPp(10, 1 / 10, prob = function(x) {
1/(1+abs(x))
})
-#> [1] 41.60962 138.35684 188.08757 211.56756 309.76428 470.17650 488.34307
-#> [8] 575.85332 600.88539 610.34441
+#> [1] 138.8436 203.4074 226.3012 232.2946 263.0445 488.9945 610.6908 755.5606
+#> [9] 797.7449 871.9501
diff --git a/reference/rxbeta.html b/reference/rxbeta.html
index 213d253ab..f3e883a9c 100644
--- a/reference/rxbeta.html
+++ b/reference/rxbeta.html
@@ -198,14 +198,14 @@