diff --git a/articles/Integrating-User-Defined-Functions-into-rxode2.html b/articles/Integrating-User-Defined-Functions-into-rxode2.html index dce60b459..668653534 100644 --- a/articles/Integrating-User-Defined-Functions-into-rxode2.html +++ b/articles/Integrating-User-Defined-Functions-into-rxode2.html @@ -248,8 +248,8 @@
The C version is almost twice as fast as the R version. You may have noticed the conversion also created C versions of the first derivative. This is done automatically and gives not just C versions of function, diff --git a/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/benmchmark1-1.png b/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/benmchmark1-1.png index 11e105f0d..a9ff4f8f7 100644 Binary files a/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/benmchmark1-1.png and b/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/benmchmark1-1.png differ diff --git a/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/convertC-1.png b/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/convertC-1.png index 2f522d5ca..b5680b746 100644 Binary files a/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/convertC-1.png and b/articles/Integrating-User-Defined-Functions-into-rxode2_files/figure-html/convertC-1.png differ diff --git a/articles/rxode2-cmt.html b/articles/rxode2-cmt.html index 3c699453e..067629c85 100644 --- a/articles/rxode2-cmt.html +++ b/articles/rxode2-cmt.html @@ -380,8 +380,8 @@
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
summary(pbpk)
#> rxode2 2.0.14.9000 model named rx_ec8d3d933baf3d4de1861f6eee3af54f model (ready).
-#> DLL: /tmp/RtmpVppdYK/rxode2/rx_ec8d3d933baf3d4de1861f6eee3af54f__.rxd/rx_ec8d3d933baf3d4de1861f6eee3af54f_.so
+#> rxode2 2.0.14.9000 model named rx_6d8a93557eeb02beabea128dc5ad47d7 model (ready).
+#> DLL: /tmp/RtmpBVbnb0/rxode2/rx_6d8a93557eeb02beabea128dc5ad47d7__.rxd/rx_6d8a93557eeb02beabea128dc5ad47d7_.so
#> NULL
#>
#> Calculated Variables:
@@ -731,7 +731,7 @@ Appending compartments to the model
ode.1c.ka$simulationModel
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_94ed67c611bcc72139f39e47b9aa8dad model (ready).
+#> rxode2 2.0.14.9000 model named rx_c11f1e22b8dac0362b486af248228475 model (ready).
#> x$state: depot, center
#> x$stateExtra: eff
#> x$params: V, KA, CL
diff --git a/articles/rxode2-model-types.html b/articles/rxode2-model-types.html
index 4371c056a..eccc50f32 100644
--- a/articles/rxode2-model-types.html
+++ b/articles/rxode2-model-types.html
@@ -237,18 +237,18 @@ Solved compartment modelsVC
or V
),
Peripheral/Tissue (VP
, VT
). While more
translations are available, some example translations are below:
-
-Another popular parameterization is in terms of micro-constants.
+
+Another popular parameterization is in terms of micro-constants.
rxode2 assumes compartment 1
is the central compartment.
The elimination constant would be specified by K
,
Ke
or Kel
. Some example translations are
below:
-
-The last parameterization possible is using alpha
and
+
+The last parameterization possible is using alpha
and
V
and/or A
/B
/C
. Some
example translations are below:
-
-Once the linCmt()
sleuthing is complete, the
+
+Once the linCmt()
sleuthing is complete, the
1
, 2
or 3
compartment model
solution is used as the value of linCmt()
.
The compartments where you can dose in a linear solved system are
diff --git a/articles/rxode2-nesting.html b/articles/rxode2-nesting.html
index ec9db2bda..0056659f6 100644
--- a/articles/rxode2-nesting.html
+++ b/articles/rxode2-nesting.html
@@ -312,24 +312,24 @@
Uncertainty in Model parametersdimnames(tMat) <- list(names(theta), names(theta))
tMat
-#> TKA TCl V2 Q V3
-#> TKA 0.11703531 0.022931069 0.052659176 0.015735283 -0.001471800
-#> TCl 0.02293107 0.137434951 -0.035314127 0.022575607 0.002065351
-#> V2 0.05265918 -0.035314127 0.071584655 0.024768330 -0.001413514
-#> Q 0.01573528 0.022575607 0.024768330 0.072451666 -0.001353117
-#> V3 -0.00147180 0.002065351 -0.001413514 -0.001353117 0.076367568
-#> Kin -0.03399546 -0.018732699 0.028468730 0.044572898 -0.047261248
-#> Kout 0.14814446 0.086491775 0.061381309 0.012673464 -0.059667284
-#> EC50 -0.04006924 0.083122933 -0.075862944 -0.012908714 -0.006387074
-#> Kin Kout EC50
-#> TKA -0.03399546 0.14814446 -0.040069235
-#> TCl -0.01873270 0.08649177 0.083122933
-#> V2 0.02846873 0.06138131 -0.075862944
-#> Q 0.04457290 0.01267346 -0.012908714
-#> V3 -0.04726125 -0.05966728 -0.006387074
-#> Kin 0.12125456 -0.02337792 -0.020179869
-#> Kout -0.02337792 0.32026957 -0.008859630
-#> EC50 -0.02017987 -0.00885963 0.104055320
+#> TKA TCl V2 Q V3 Kin
+#> TKA 0.112115698 -0.009850556 0.007551027 0.02717015 -0.06912995 0.01519379
+#> TCl -0.009850556 0.123837710 0.006503724 -0.01642326 0.03217000 -0.01689723
+#> V2 0.007551027 0.006503724 0.069794754 0.03977863 -0.02727803 0.04706302
+#> Q 0.027170148 -0.016423262 0.039778625 0.13483848 -0.02367142 0.05663249
+#> V3 -0.069129952 0.032170001 -0.027278033 -0.02367142 0.18452035 -0.14166802
+#> Kin 0.015193790 -0.016897230 0.047063019 0.05663249 -0.14166802 0.18310876
+#> Kout -0.087672219 -0.059697923 -0.014594854 0.02393805 0.03389565 0.01483708
+#> EC50 0.001308951 -0.071851696 -0.019930371 -0.06072524 0.01027476 -0.06529272
+#> Kout EC50
+#> TKA -0.08767222 0.001308951
+#> TCl -0.05969792 -0.071851696
+#> V2 -0.01459485 -0.019930371
+#> Q 0.02393805 -0.060725240
+#> V3 0.03389565 0.010274758
+#> Kin 0.01483708 -0.065292716
+#> Kout 0.17854707 0.057224680
+#> EC50 0.05722468 0.258349758
Nesting Variability
@@ -407,16 +407,16 @@ Solving the problem#> # A tibble: 8,000 x 24
#> sim.id id `inv.Cl(inv==1)` `inv.Cl(inv==2)` `inv.Ka(inv==1)`
#> <int> <fct> <dbl> <dbl> <dbl>
-#> 1 1 1 -0.136 -0.0346 0.0544
-#> 2 1 2 -0.136 -0.0346 0.0544
-#> 3 1 3 -0.136 -0.0346 0.0544
-#> 4 1 4 -0.136 -0.0346 0.0544
-#> 5 1 5 -0.136 -0.0346 0.0544
-#> 6 1 6 -0.136 -0.0346 0.0544
-#> 7 1 7 -0.136 -0.0346 0.0544
-#> 8 1 8 -0.136 -0.0346 0.0544
-#> 9 1 9 -0.136 -0.0346 0.0544
-#> 10 1 10 -0.136 -0.0346 0.0544
+#> 1 1 1 -0.353 -0.00831 0.172
+#> 2 1 2 -0.353 -0.00831 0.172
+#> 3 1 3 -0.353 -0.00831 0.172
+#> 4 1 4 -0.353 -0.00831 0.172
+#> 5 1 5 -0.353 -0.00831 0.172
+#> 6 1 6 -0.353 -0.00831 0.172
+#> 7 1 7 -0.353 -0.00831 0.172
+#> 8 1 8 -0.353 -0.00831 0.172
+#> 9 1 9 -0.353 -0.00831 0.172
+#> 10 1 10 -0.353 -0.00831 0.172
#> # i 7,990 more rows
#> # i 19 more variables: `inv.Ka(inv==2)` <dbl>, `eye.Cl(eye==1)` <dbl>,
#> # `eye.Cl(eye==2)` <dbl>, `eye.Ka(eye==1)` <dbl>, `eye.Ka(eye==2)` <dbl>,
@@ -433,14 +433,14 @@ Solving the problem#>
#> -- First part of data (object): --
#> # A tibble: 976,000 x 21
-#> sim.id id time inv.Cl inv.Ka eye.Cl eye.Ka iov.Cl iov.Ka C2 C3
-#> <int> <int> [h] <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
-#> 1 1 1 0 -0.136 0.0544 0.0480 0.358 0.00583 -0.113 0 0
-#> 2 1 1 0.1 -0.136 0.0544 0.166 -0.0803 0.00583 -0.113 0.176 0.000220
-#> 3 1 1 4 -0.136 0.0544 0.0480 0.358 0.00583 -0.113 1.30 0.102
-#> 4 1 1 4.1 -0.136 0.0544 0.166 -0.0803 0.00583 -0.113 0.772 0.106
-#> 5 1 1 8 -0.136 0.0544 0.0480 0.358 0.00583 -0.113 1.34 0.237
-#> 6 1 1 8.1 -0.136 0.0544 0.166 -0.0803 0.00583 -0.113 1.75 0.240
+#> sim.id id time inv.Cl inv.Ka eye.Cl eye.Ka iov.Cl iov.Ka C2 C3
+#> <int> <int> [h] <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
+#> 1 1 1 0 -0.353 0.172 -0.0847 -0.0714 -0.140 -0.0936 0 0
+#> 2 1 1 0.1 -0.353 0.172 0.377 0.0547 -0.140 -0.0936 1.40 0.00175
+#> 3 1 1 4 -0.353 0.172 -0.0847 -0.0714 -0.140 -0.0936 5.37 1.26
+#> 4 1 1 4.1 -0.353 0.172 0.377 0.0547 -0.140 -0.0936 4.81 1.30
+#> 5 1 1 8 -0.353 0.172 -0.0847 -0.0714 -0.140 -0.0936 9.91 2.68
+#> 6 1 1 8.1 -0.353 0.172 0.377 0.0547 -0.140 -0.0936 13.2 2.71
#> # i 975,994 more rows
#> # i 10 more variables: CL <dbl>, KA <dbl>, ef0 <dbl>, depot <dbl>, centr <dbl>,
#> # peri <dbl>, eff <dbl>, occ <fct>, eye <fct>, inv <fct>
@@ -462,63 +462,63 @@ Solving the problem
print(head(s$params))
#> sim.id id inv.Cl(inv==1) inv.Cl(inv==2) inv.Ka(inv==1) inv.Ka(inv==2)
-#> 1 1 1 -0.1358041 -0.03458078 0.05442917 -0.247565
-#> 2 1 2 -0.1358041 -0.03458078 0.05442917 -0.247565
-#> 3 1 3 -0.1358041 -0.03458078 0.05442917 -0.247565
-#> 4 1 4 -0.1358041 -0.03458078 0.05442917 -0.247565
-#> 5 1 5 -0.1358041 -0.03458078 0.05442917 -0.247565
-#> 6 1 6 -0.1358041 -0.03458078 0.05442917 -0.247565
+#> 1 1 1 -0.3533063 -0.008309353 0.1723393 0.1790294
+#> 2 1 2 -0.3533063 -0.008309353 0.1723393 0.1790294
+#> 3 1 3 -0.3533063 -0.008309353 0.1723393 0.1790294
+#> 4 1 4 -0.3533063 -0.008309353 0.1723393 0.1790294
+#> 5 1 5 -0.3533063 -0.008309353 0.1723393 0.1790294
+#> 6 1 6 -0.3533063 -0.008309353 0.1723393 0.1790294
#> eye.Cl(eye==1) eye.Cl(eye==2) eye.Ka(eye==1) eye.Ka(eye==2) iov.Cl(occ==1)
-#> 1 0.04797388 0.16647897 0.35836544 -0.080281803 0.005827296
-#> 2 -0.04207586 -0.32127178 -0.15381006 -0.081901013 -0.073410210
-#> 3 -0.06470621 0.08531993 0.50480958 0.123794024 -0.037007587
-#> 4 0.18526342 -0.11872354 0.09425413 0.324428942 -0.068267346
-#> 5 0.40433862 -0.63445992 0.15596531 -0.005328036 0.054351465
-#> 6 -0.10670056 -0.04731742 -0.07487432 0.151772521 0.039997588
+#> 1 -0.084653889 0.377393098 -0.07141393 0.054704962 -0.14011265
+#> 2 -0.008520937 -0.489077008 0.16927439 0.285783930 0.04358167
+#> 3 -0.283413323 0.098641223 0.34678208 0.007353856 -0.06327579
+#> 4 0.149526061 -0.041868359 -0.05790838 -0.286091428 0.03214023
+#> 5 0.112097239 0.001519346 -0.24261776 0.372461612 0.01406414
+#> 6 -0.400467774 -0.210597805 -0.22281062 0.017565035 0.03305942
#> iov.Cl(occ==2) iov.Ka(occ==1) iov.Ka(occ==2) V2 V3 TCl
-#> 1 0.17467000 -0.11315524 -0.027471307 39.85601 297.0982 18.79008
-#> 2 -0.14607724 0.03259654 -0.051505853 39.85601 297.0982 18.79008
-#> 3 0.11164067 0.07856921 0.030400711 39.85601 297.0982 18.79008
-#> 4 -0.08760437 0.18215322 0.136151248 39.85601 297.0982 18.79008
-#> 5 0.04369457 0.06254118 0.031107436 39.85601 297.0982 18.79008
-#> 6 -0.10039367 -0.04020207 0.001598441 39.85601 297.0982 18.79008
-#> eta.Cl TKA eta.Ka Q Kin Kout EC50
-#> 1 1.054405e-02 0.002957436 0.14108524 10.32072 0.8976381 0.5071298 200.3713
-#> 2 -7.116645e-01 0.002957436 0.06126781 10.32072 0.8976381 0.5071298 200.3713
-#> 3 3.654174e-01 0.002957436 -0.42567552 10.32072 0.8976381 0.5071298 200.3713
-#> 4 -3.738538e-01 0.002957436 -0.19753563 10.32072 0.8976381 0.5071298 200.3713
-#> 5 -4.999339e-01 0.002957436 0.01392929 10.32072 0.8976381 0.5071298 200.3713
-#> 6 9.387773e-05 0.002957436 0.26899582 10.32072 0.8976381 0.5071298 200.3713
+#> 1 -0.0292564230 -0.09358504 -0.177665154 39.79951 296.9817 18.61471
+#> 2 -0.0009348098 -0.03414698 -0.009404361 39.79951 296.9817 18.61471
+#> 3 0.0779231208 0.04814655 0.026132683 39.79951 296.9817 18.61471
+#> 4 0.2262657620 0.03857114 0.046516675 39.79951 296.9817 18.61471
+#> 5 -0.0376018698 -0.02992865 -0.012187652 39.79951 296.9817 18.61471
+#> 6 0.0405471434 0.07387049 -0.112104457 39.79951 296.9817 18.61471
+#> eta.Cl TKA eta.Ka Q Kin Kout EC50
+#> 1 0.2415634 0.04791035 -0.1249151 10.40671 1.3783 0.9330583 199.2484
+#> 2 0.1791659 0.04791035 -0.2733750 10.40671 1.3783 0.9330583 199.2484
+#> 3 -0.3918928 0.04791035 -0.2927899 10.40671 1.3783 0.9330583 199.2484
+#> 4 0.3992829 0.04791035 -0.7020660 10.40671 1.3783 0.9330583 199.2484
+#> 5 -0.3256218 0.04791035 -0.2616939 10.40671 1.3783 0.9330583 199.2484
+#> 6 0.1645415 0.04791035 -0.2896588 10.40671 1.3783 0.9330583 199.2484
#> sim.id id inv.Cl(inv==1) inv.Cl(inv==2) inv.Ka(inv==1) inv.Ka(inv==2)
-#> 1 2 1 -0.09225121 0.4197625 0.1103034 -0.1515019
-#> 2 2 2 -0.09225121 0.4197625 0.1103034 -0.1515019
-#> 3 2 3 -0.09225121 0.4197625 0.1103034 -0.1515019
-#> 4 2 4 -0.09225121 0.4197625 0.1103034 -0.1515019
-#> 5 2 5 -0.09225121 0.4197625 0.1103034 -0.1515019
-#> 6 2 6 -0.09225121 0.4197625 0.1103034 -0.1515019
+#> 1 2 1 0.0169642 -0.0865073 0.07706971 0.04302365
+#> 2 2 2 0.0169642 -0.0865073 0.07706971 0.04302365
+#> 3 2 3 0.0169642 -0.0865073 0.07706971 0.04302365
+#> 4 2 4 0.0169642 -0.0865073 0.07706971 0.04302365
+#> 5 2 5 0.0169642 -0.0865073 0.07706971 0.04302365
+#> 6 2 6 0.0169642 -0.0865073 0.07706971 0.04302365
#> eye.Cl(eye==1) eye.Cl(eye==2) eye.Ka(eye==1) eye.Ka(eye==2) iov.Cl(occ==1)
-#> 1 -0.05488014 -0.07984957 -0.07530740 -0.36889709 -0.004469539
-#> 2 -0.17343539 -0.14952653 0.02524376 0.07617528 0.094073636
-#> 3 -0.12164179 -0.08067928 -0.25448151 0.17660129 -0.046442839
-#> 4 -0.02718104 -0.15424966 0.21579809 -0.24989727 -0.171911720
-#> 5 -0.23841107 0.14090024 -0.01857125 -0.06831204 -0.015170982
-#> 6 -0.24138686 0.29118531 0.08672166 -0.23968576 -0.064346196
+#> 1 0.20650330 -0.1829621 0.08264560 0.10839285 0.10782270
+#> 2 0.29778283 -0.1177979 -0.08434116 -0.53302172 -0.08026276
+#> 3 -0.42770744 0.3203564 -0.26161057 0.05568947 0.11659689
+#> 4 0.08043367 0.2573634 -0.36286064 -0.19528470 -0.11121546
+#> 5 -0.14661952 0.5356398 -0.27605050 0.36553911 -0.18787017
+#> 6 0.11496384 0.1928787 -0.18474926 -0.08959247 0.05365931
#> iov.Cl(occ==2) iov.Ka(occ==1) iov.Ka(occ==2) V2 V3 TCl
-#> 1 -0.02549565 0.11869518 -0.059886917 40.67424 297.1828 18.72567
-#> 2 -0.02005688 0.08023493 0.155252184 40.67424 297.1828 18.72567
-#> 3 0.04486803 0.05466137 0.103977734 40.67424 297.1828 18.72567
-#> 4 0.04688039 -0.10694955 0.061867014 40.67424 297.1828 18.72567
-#> 5 -0.08289231 -0.06934717 0.003205325 40.67424 297.1828 18.72567
-#> 6 0.13039400 0.09517615 -0.011655494 40.67424 297.1828 18.72567
-#> eta.Cl TKA eta.Ka Q Kin Kout EC50
-#> 1 0.47805457 0.5717354 -0.01968098 10.79085 1.172023 1.645267 199.6726
-#> 2 0.13587628 0.5717354 0.36191935 10.79085 1.172023 1.645267 199.6726
-#> 3 0.46234600 0.5717354 -0.22213797 10.79085 1.172023 1.645267 199.6726
-#> 4 -0.01367034 0.5717354 0.54603539 10.79085 1.172023 1.645267 199.6726
-#> 5 -0.05675895 0.5717354 -0.33562398 10.79085 1.172023 1.645267 199.6726
-#> 6 -0.56596753 0.5717354 0.41054459 10.79085 1.172023 1.645267 199.6726
+#> 1 -0.003803654 -0.10875855 0.007812402 40.29161 296.3749 17.89706
+#> 2 0.040870705 0.04182948 0.093824939 40.29161 296.3749 17.89706
+#> 3 -0.055541424 -0.03764843 -0.001353899 40.29161 296.3749 17.89706
+#> 4 0.164971483 0.06685138 -0.160326180 40.29161 296.3749 17.89706
+#> 5 0.033599149 0.19445236 0.005788602 40.29161 296.3749 17.89706
+#> 6 0.087378394 -0.03946372 0.125610916 40.29161 296.3749 17.89706
+#> eta.Cl TKA eta.Ka Q Kin Kout EC50
+#> 1 -0.3446937 0.5746999 0.27666700 11.19831 1.625991 1.514061 199.5783
+#> 2 -0.2181176 0.5746999 -0.08547344 11.19831 1.625991 1.514061 199.5783
+#> 3 -0.3546153 0.5746999 0.08954298 11.19831 1.625991 1.514061 199.5783
+#> 4 -0.2663074 0.5746999 -0.28837020 11.19831 1.625991 1.514061 199.5783
+#> 5 -0.2453782 0.5746999 0.52587183 11.19831 1.625991 1.514061 199.5783
+#> 6 -0.1355534 0.5746999 -0.07475203 11.19831 1.625991 1.514061 199.5783
For between eye variability and between occasion variability each individual simulates a number of variables that become the between eye and between occasion variability; In the case of the eye:
diff --git a/articles/rxode2-plot_files/figure-html/unnamed-chunk-10-1.png b/articles/rxode2-plot_files/figure-html/unnamed-chunk-10-1.png index a3ff881a3..40c38aa9a 100644 Binary files a/articles/rxode2-plot_files/figure-html/unnamed-chunk-10-1.png and b/articles/rxode2-plot_files/figure-html/unnamed-chunk-10-1.png differ diff --git a/articles/rxode2-plot_files/figure-html/unnamed-chunk-6-1.png b/articles/rxode2-plot_files/figure-html/unnamed-chunk-6-1.png index 6f4bc30c1..1a6ef11b9 100644 Binary files a/articles/rxode2-plot_files/figure-html/unnamed-chunk-6-1.png and b/articles/rxode2-plot_files/figure-html/unnamed-chunk-6-1.png differ diff --git a/articles/rxode2-plot_files/figure-html/unnamed-chunk-7-1.png b/articles/rxode2-plot_files/figure-html/unnamed-chunk-7-1.png index 8f37c4508..bf95df0a5 100644 Binary files a/articles/rxode2-plot_files/figure-html/unnamed-chunk-7-1.png and b/articles/rxode2-plot_files/figure-html/unnamed-chunk-7-1.png differ diff --git a/articles/rxode2-plot_files/figure-html/unnamed-chunk-8-1.png b/articles/rxode2-plot_files/figure-html/unnamed-chunk-8-1.png index b1521b935..5d0c3e3bc 100644 Binary files a/articles/rxode2-plot_files/figure-html/unnamed-chunk-8-1.png and b/articles/rxode2-plot_files/figure-html/unnamed-chunk-8-1.png differ diff --git a/articles/rxode2-prior-data.html b/articles/rxode2-prior-data.html index 9db4d0712..3720caf61 100644 --- a/articles/rxode2-prior-data.html +++ b/articles/rxode2-prior-data.html @@ -242,33 +242,33 @@
summary(mod1$simulationModel)
-#> rxode2 2.0.14.9000 model named rx_48f49ff1bdb73275bf9c3d4f4f7a6d4b model (✔ ready).
-#> DLL: /tmp/RtmpVppdYK/rxode2/rx_48f49ff1bdb73275bf9c3d4f4f7a6d4b__.rxd/rx_48f49ff1bdb73275bf9c3d4f4f7a6d4b_.so
+#> rxode2 2.0.14.9000 model named rx_db80e478121f8e784e2d30c54fcb1081 model (✔ ready).
+#> DLL: /tmp/RtmpBVbnb0/rxode2/rx_db80e478121f8e784e2d30c54fcb1081__.rxd/rx_db80e478121f8e784e2d30c54fcb1081_.so
#> NULL
#>
#> Calculated Variables:
@@ -281,8 +281,8 @@ A note about t
#> })
summary(mod1$simulationIniModel)
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_3eab9f1a7cd21d7e0c4190243c7f019a model (✔ ready).
-#> DLL: /tmp/RtmpVppdYK/rxode2/rx_3eab9f1a7cd21d7e0c4190243c7f019a__.rxd/rx_3eab9f1a7cd21d7e0c4190243c7f019a_.so
+#> rxode2 2.0.14.9000 model named rx_f983050b4d043a2d1bddc53cae8763af model (✔ ready).
+#> DLL: /tmp/RtmpBVbnb0/rxode2/rx_f983050b4d043a2d1bddc53cae8763af__.rxd/rx_f983050b4d043a2d1bddc53cae8763af_.so
#> NULL
#>
#> Calculated Variables:
@@ -308,8 +308,8 @@ A note about t
#> })
summary(mod2f$simulationModel)
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_63d7d624d1370120af0f9008bf535be6 model (✔ ready).
-#> DLL: /tmp/RtmpVppdYK/rxode2/rx_63d7d624d1370120af0f9008bf535be6__.rxd/rx_63d7d624d1370120af0f9008bf535be6_.so
+#> rxode2 2.0.14.9000 model named rx_76abba9a614b701fe51948c96c81d359 model (✔ ready).
+#> DLL: /tmp/RtmpBVbnb0/rxode2/rx_76abba9a614b701fe51948c96c81d359__.rxd/rx_76abba9a614b701fe51948c96c81d359_.so
#> NULL
#>
#> Calculated Variables:
@@ -365,8 +365,8 @@ A note about t
#> })
summary(mod2f$simulationIniModel)
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
-#> rxode2 2.0.14.9000 model named rx_c75664d6ede0dda7c3827e94125ef4ef model (✔ ready).
-#> DLL: /tmp/RtmpVppdYK/rxode2/rx_c75664d6ede0dda7c3827e94125ef4ef__.rxd/rx_c75664d6ede0dda7c3827e94125ef4ef_.so
+#> rxode2 2.0.14.9000 model named rx_248313db0b0e6bea5a35842a1e380bd0 model (✔ ready).
+#> DLL: /tmp/RtmpBVbnb0/rxode2/rx_248313db0b0e6bea5a35842a1e380bd0__.rxd/rx_248313db0b0e6bea5a35842a1e380bd0_.so
#> NULL
#>
#> Calculated Variables:
@@ -552,10 +552,10 @@ Compare the times between all
print(bench)
#> Unit: milliseconds
#> expr min lq mean median uq max
-#> runFor() 271.81682 278.74905 288.89859 281.46215 284.61841 404.48874
-#> runSapply() 272.56090 278.64349 290.84184 281.62528 290.58622 398.81243
-#> runSingleThread() 26.99561 27.13204 27.74932 27.24601 27.36167 41.59049
-#> run2Thread() 15.83949 16.06777 17.14434 16.15578 16.38853 27.38163
+#> runFor() 273.36087 280.71252 290.49464 284.72726 289.38028 409.27682
+#> runSapply() 276.32420 283.62340 296.42514 287.06816 291.55511 437.66808
+#> runSingleThread() 27.51829 27.77083 28.47065 27.93337 28.26201 39.87901
+#> run2Thread() 16.35011 16.59553 17.71113 16.88060 17.39516 28.67465
#> neval
#> 100
#> 100
@@ -582,10 +582,10 @@ Compare the times between all
print(bench)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
-#> runThread(1) 27.05900 27.31811 29.19751 28.66136 28.87044 47.00146 100
-#> runThread(2) 15.94458 16.49794 19.08869 17.10799 20.58453 31.53423 100
-#> runThread(3) 17.32382 19.11146 19.78856 19.61431 20.10179 27.24244 100
-#> runThread(4) 15.49043 15.85613 17.41446 16.35305 16.62235 46.11001 100
autoplot(bench)
By applying some of the new parallel solving concepts you can simply run the same simulation both with less code and faster:
@@ -805,7 +805,7 @@A real life exampleres <- rxSolve(rx, ev, omega=omega, returnType="data.table") endParallel <- Sys.time() print(endParallel - startParallel) -#> Time difference of 0.1176918 secs
You can see a striking time difference between the two methods; A few things to keep in mind: