-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluate.py
executable file
·72 lines (52 loc) · 3.25 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python
from __future__ import print_function
import argparse
from pandas import read_csv
from sklearn.metrics import adjusted_rand_score
def gold_predict(df):
""" This method assigns the gold and predict fields to the data frame. """
df = df.copy()
df['gold'] = df['word'] + '_' + df['gold_sense_id']
df['predict'] = df['word'] + '_' + df['predict_sense_id']
return df
def ari_per_word_weighted(df):
""" This method computes the ARI score weighted by the number of sentences per word. """
df = gold_predict(df)
words = {word: (adjusted_rand_score(df_word.gold, df_word.predict), len(df_word))
for word in df.word.unique()
for df_word in (df.loc[df['word'] == word],)}
cumsum = sum(ari * count for ari, count in words.values())
total = sum(count for _, count in words.values())
assert total == len(df), 'please double-check the format of your data'
return cumsum / total, words
def evaluate(dataset_fpath):
df = read_csv(dataset_fpath, sep='\t', dtype={'gold_sense_id': str, 'predict_sense_id': str})
ari, words = ari_per_word_weighted(df)
print('{}\t{}\t{}'.format('word', 'ari', 'count'))
for word in sorted(words.keys()):
print('{}\t{:.6f}\t{:d}'.format(word, *words[word]))
print('\t{:.6f}\t{:d}'.format(ari, len(df)))
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
description='Evaluate the quality of Word Sense Induction (WSI) '
'in the shared task http://russe.nlpub.org/2018/wsi/ '
'based on the Adjusted Rand Index (ARI) metric '
'between the vectors of the gold standard sense '
'annotations and the predicted sense annotations. '
'The participants of the shared '
'task are supposed to fill the initially void "predict_sense_id" '
'column of the dataset CSV file. The evaluation script compares '
'values in this column of the file with the values in the '
'"gold_sense_id" to compute the ARI metric. The training '
' datasets in the required format are available in the '
'"data" directory (train.csv). To run an already pre-filled '
'baseline system run '
'"python evaluate.py data/main/wiki-wiki/train.baseline-adagram.csv"')
parser.add_argument('dataset', type=argparse.FileType('r'),
help='Path to a CSV file with the dataset in the format '
'"context_id<TAB>word<TAB>gold_sense_id<TAB>predict_sense_id'
'<TAB>positions<TAB>context". ')
args = parser.parse_args()
evaluate(args.dataset)
if __name__ == '__main__':
main()