forked from openLRSng/openLRSng
-
Notifications
You must be signed in to change notification settings - Fork 0
/
binding.h
546 lines (470 loc) · 14.2 KB
/
binding.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
// OpenLRSng binding
// Factory setting values, modify via the CLI
//####### RADIOLINK RF POWER (beacon is always 100/13/1.3mW) #######
// 7 == 100mW (or 1000mW with M3)
// 6 == 50mW (use this when using booster amp), (800mW with M3)
// 5 == 25mW
// 4 == 13mW
// 3 == 6mW
// 2 == 3mW
// 1 == 1.6mW
// 0 == 1.3mW
#define DEFAULT_RF_POWER 7
#define DEFAULT_CHANNEL_SPACING 5 // 50kHz
#define DEFAULT_HOPLIST 22,10,19,34,49,41
#define DEFAULT_RF_MAGIC 0xDEADFEED
// 0 -- 4800bps, best range
// 1 -- 9600bps, medium range
// 2 -- 19200bps, medium range
#define DEFAULT_DATARATE 2
#define DEFAULT_BAUDRATE 115200
// TX_CONFIG flag masks
#define ALT_POWER 0x08
#define MUTE_TX 0x10 // do not beep on telemetry loss
#define MICROPPM 0x20
#define INVERTED_PPMIN 0x40
#define WATCHDOG_USED 0x80 // read only flag, only sent to configurator
// RX_CONFIG flag masks
#define PPM_MAX_8CH 0x01
#define ALWAYS_BIND 0x02
#define SLAVE_MODE 0x04
#define IMMEDIATE_OUTPUT 0x08
#define STATIC_BEACON 0x10
#define WATCHDOG_USED 0x80 // read only flag, only sent to configurator
// BIND_DATA flag masks
#define TELEMETRY_OFF 0x00
#define TELEMETRY_PASSTHRU 0x08
#define TELEMETRY_FRSKY 0x10 // covers smartport if used with &
#define TELEMETRY_SMARTPORT 0x18
#define TELEMETRY_MASK 0x18
#define CHANNELS_4_4 0x01
#define CHANNELS_8 0x02
#define CHANNELS_8_4 0x03
#define CHANNELS_12 0x04
#define CHANNELS_12_4 0x05
#define CHANNELS_16 0x06
#define DEFAULT_FLAGS (CHANNELS_8 | TELEMETRY_PASSTHRU)
// helper macro for European PMR channels
#define EU_PMR_CH(x) (445993750L + 12500L * (x)) // valid for ch1-ch8
// helper macro for US FRS channels 1-7
#define US_FRS_CH(x) (462537500L + 25000L * (x)) // valid for ch1-ch7
#define DEFAULT_BEACON_FREQUENCY 0 // disable beacon
#define DEFAULT_BEACON_DEADTIME 30 // time to wait until go into beacon mode (30s)
#define DEFAULT_BEACON_INTERVAL 10 // interval between beacon transmits (10s)
#define MIN_DEADTIME 0
#define MAX_DEADTIME 255
#define MIN_INTERVAL 1
#define MAX_INTERVAL 255
#define BINDING_POWER 0x06 // not lowest since may result fail with RFM23BP
#define TELEMETRY_PACKETSIZE 9
#define BIND_MAGIC (0xDEC1BE15 + (OPENLRSNG_VERSION & 0xfff0))
#define BINDING_VERSION ((OPENLRSNG_VERSION & 0x0ff0)>>4)
static uint8_t default_hop_list[] = {DEFAULT_HOPLIST};
// HW frequency limits
#if (RFMTYPE == 868)
# define MIN_RFM_FREQUENCY 848000000
# define MAX_RFM_FREQUENCY 888000000
# define DEFAULT_CARRIER_FREQUENCY 868000000 // Hz (ch 0)
# define BINDING_FREQUENCY 868000000 // Hz
#elif (RFMTYPE == 915)
# define MIN_RFM_FREQUENCY 895000000
# define MAX_RFM_FREQUENCY 935000000
# define DEFAULT_CARRIER_FREQUENCY 915000000 // Hz (ch 0)
# define BINDING_FREQUENCY 915000000 // Hz
#else
# define MIN_RFM_FREQUENCY 413000000
# define MAX_RFM_FREQUENCY 463000000
# define DEFAULT_CARRIER_FREQUENCY 435000000 // Hz (ch 0)
# define BINDING_FREQUENCY 435000000 // Hz
#endif
#define MAXHOPS 24
#define PPM_CHANNELS 16
uint8_t activeProfile = 0;
struct tx_config {
uint8_t rfm_type;
uint32_t max_frequency;
uint32_t flags;
uint8_t chmap[16];
} tx_config;
// 0 - no PPM needed, 1=2ch ... 0x0f=16ch
#define TX_CONFIG_GETMINCH() (tx_config.flags >> 28)
#define TX_CONFIG_SETMINCH(x) (tx_config.flags = (tx_config.flags & 0x0fffffff) | (((uint32_t)(x) & 0x0f) << 28))
struct RX_config {
uint8_t rx_type; // RX type fillled in by RX, do not change
uint8_t pinMapping[13];
uint8_t flags;
uint8_t RSSIpwm; //0-15 inject composite, 16-31 inject quality, 32-47 inject RSSI, 48-63 inject quality & RSSI on two separate channels
uint32_t beacon_frequency;
uint8_t beacon_deadtime;
uint8_t beacon_interval;
uint16_t minsync;
uint8_t failsafeDelay;
uint8_t ppmStopDelay;
uint8_t pwmStopDelay;
} rx_config;
struct bind_data {
uint8_t version;
uint32_t serial_baudrate;
uint32_t rf_frequency;
uint32_t rf_magic;
uint8_t rf_power;
uint8_t rf_channel_spacing;
uint8_t hopchannel[MAXHOPS];
uint8_t modem_params;
uint8_t flags;
} bind_data;
struct rfm22_modem_regs {
uint32_t bps;
uint8_t r_1c, r_1d, r_1e, r_20, r_21, r_22, r_23, r_24, r_25, r_2a, r_6e, r_6f, r_70, r_71, r_72;
} modem_params[] = {
{ 4800, 0x1a, 0x40, 0x0a, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x1b, 0x1e, 0x27, 0x52, 0x2c, 0x23, 0x30 }, // 50000 0x00
{ 9600, 0x05, 0x40, 0x0a, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x20, 0x24, 0x4e, 0xa5, 0x2c, 0x23, 0x30 }, // 25000 0x00
{ 19200, 0x06, 0x40, 0x0a, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x7b, 0x28, 0x9d, 0x49, 0x2c, 0x23, 0x30 }, // 25000 0x01
{ 57600, 0x05, 0x40, 0x0a, 0x45, 0x01, 0xd7, 0xdc, 0x03, 0xb8, 0x1e, 0x0e, 0xbf, 0x00, 0x23, 0x2e },
{ 125000, 0x8a, 0x40, 0x0a, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x1e, 0x20, 0x00, 0x00, 0x23, 0xc8 },
};
#define DATARATE_COUNT (sizeof(modem_params) / sizeof(modem_params[0]))
struct rfm22_modem_regs bind_params =
{ 9600, 0x05, 0x40, 0x0a, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x20, 0x24, 0x4e, 0xa5, 0x2c, 0x23, 0x30 };
// prototype
void fatalBlink(uint8_t blinks);
#include <avr/eeprom.h>
// Save EEPROM by writing just changed data
void myEEPROMwrite(int16_t addr, uint8_t data)
{
uint8_t retries = 5;
while ((--retries) && (data != eeprom_read_byte((uint8_t *)addr))) {
eeprom_write_byte((uint8_t *)addr, data);
}
if (!retries) {
fatalBlink(2);
}
}
static uint16_t CRC16_value;
inline void CRC16_reset()
{
CRC16_value = 0;
}
void CRC16_add(uint8_t c) // CCITT polynome
{
uint8_t i;
CRC16_value ^= (uint16_t)c << 8;
for (i = 0; i < 8; i++) {
if (CRC16_value & 0x8000) {
CRC16_value = (CRC16_value << 1) ^ 0x1021;
} else {
CRC16_value = (CRC16_value << 1);
}
}
}
// Halt and blink failure code
void fatalBlink(uint8_t blinks)
{
while (1) {
for (uint8_t i=0; i < blinks; i++) {
Red_LED_ON;
delay(100);
Red_LED_OFF;
delay(100);
}
delay(300);
}
}
#if (COMPILE_TX != 1)
extern uint16_t failsafePPM[PPM_CHANNELS];
#endif
#define EEPROM_SIZE 1024 // EEPROM is 1k on 328p and 32u4
#define ROUNDUP(x) (((x)+15)&0xfff0)
#define MIN256(x) (((x)<256)?256:(x))
#if (COMPILE_TX == 1)
#define EEPROM_DATASIZE MIN256(ROUNDUP((sizeof(tx_config) + sizeof(bind_data) + 4) * 4 + 3))
#else
#define EEPROM_DATASIZE MIN256(ROUNDUP(sizeof(rx_config) + sizeof(bind_data) + sizeof(failsafePPM) + 6))
#endif
bool accessEEPROM(uint8_t dataType, bool write)
{
void *dataAddress = NULL;
uint16_t dataSize = 0;
uint16_t addressNeedle = 0;
uint16_t addressBase = 0;
uint16_t CRC = 0;
do {
start:
#if (COMPILE_TX == 1)
if (dataType == 0) {
dataAddress = &tx_config;
dataSize = sizeof(tx_config);
addressNeedle = (sizeof(tx_config) + sizeof(bind_data) + 4) * activeProfile;
} else if (dataType == 1) {
dataAddress = &bind_data;
dataSize = sizeof(bind_data);
addressNeedle = sizeof(tx_config) + 2;
addressNeedle += (sizeof(tx_config) + sizeof(bind_data) + 4) * activeProfile;
} else if (dataType == 2) {
dataAddress = &activeProfile;
dataSize = 1;
addressNeedle = (sizeof(tx_config) + sizeof(bind_data) + 4) * 4; // activeProfile is stored behind all 4 profiles
}
#else
if (dataType == 0) {
dataAddress = &rx_config;
dataSize = sizeof(rx_config);
addressNeedle = 0;
} else if (dataType == 1) {
dataAddress = &bind_data;
dataSize = sizeof(bind_data);
addressNeedle = sizeof(rx_config) + 2;
} else if (dataType == 2) {
dataAddress = &failsafePPM;
dataSize = sizeof(failsafePPM);
addressNeedle = sizeof(rx_config) + sizeof(bind_data) + 4;
}
#endif
addressNeedle += addressBase;
CRC16_reset();
for (uint8_t i = 0; i < dataSize; i++, addressNeedle++) {
if (!write) {
*((uint8_t*)dataAddress + i) = eeprom_read_byte((uint8_t *)(addressNeedle));
} else {
myEEPROMwrite(addressNeedle, *((uint8_t*)dataAddress + i));
}
CRC16_add(*((uint8_t*)dataAddress + i));
}
if (!write) {
CRC = eeprom_read_byte((uint8_t *)addressNeedle) << 8 | eeprom_read_byte((uint8_t *)(addressNeedle + 1));
if (CRC16_value == CRC) {
// recover corrupted data
// write operation is performed after every successful read operation, this will keep all cells valid
write = true;
addressBase = 0;
goto start;
} else {
// try next block
}
} else {
myEEPROMwrite(addressNeedle++, CRC16_value >> 8);
myEEPROMwrite(addressNeedle, CRC16_value & 0x00FF);
}
addressBase += EEPROM_DATASIZE;
} while (addressBase <= (EEPROM_SIZE - EEPROM_DATASIZE));
return (write); // success on write, failure on read
}
bool bindReadEeprom()
{
if (accessEEPROM(1, false) && (bind_data.version == BINDING_VERSION)) {
return true;
}
return false;
}
void bindWriteEeprom()
{
accessEEPROM(1, true);
}
void bindInitDefaults(void)
{
bind_data.version = BINDING_VERSION;
bind_data.serial_baudrate = DEFAULT_BAUDRATE;
bind_data.rf_power = DEFAULT_RF_POWER;
bind_data.rf_frequency = DEFAULT_CARRIER_FREQUENCY;
bind_data.rf_channel_spacing = DEFAULT_CHANNEL_SPACING;
bind_data.rf_magic = DEFAULT_RF_MAGIC;
for (uint8_t c = 0; c < MAXHOPS; c++) {
bind_data.hopchannel[c] = (c < sizeof(default_hop_list)) ? default_hop_list[c] : 0;
}
bind_data.modem_params = DEFAULT_DATARATE;
bind_data.flags = DEFAULT_FLAGS;
}
#if (COMPILE_TX == 1)
#define TX_PROFILE_COUNT 4
void profileSet()
{
accessEEPROM(2, true);
}
void profileInit()
{
accessEEPROM(2, false);
if (activeProfile >= TX_PROFILE_COUNT) {
activeProfile = 0;
profileSet();
}
}
void profileSwap(uint8_t profile)
{
profileInit();
if ((activeProfile != profile) && (profile < TX_PROFILE_COUNT)) {
activeProfile = profile;
profileSet();
}
}
void txInitDefaults()
{
tx_config.max_frequency = MAX_RFM_FREQUENCY;
tx_config.flags = 0x00;
TX_CONFIG_SETMINCH(5); // 6ch
for (uint8_t i = 0; i < 16; i++) {
tx_config.chmap[i] = i;
}
}
void bindRandomize(void)
{
uint8_t emergency_counter = 0;
uint8_t c;
uint32_t t = 0;
while (t == 0) {
t = micros();
}
srandom(t);
bind_data.rf_magic = 0;
for (c = 0; c < 4; c++) {
bind_data.rf_magic = (bind_data.rf_magic << 8) + (random() % 255);
}
// TODO: verify if this works properly
for (c = 0; (c < MAXHOPS) && (bind_data.hopchannel[c] != 0); c++) {
again:
if (emergency_counter++ == 255) {
bindInitDefaults();
return;
}
uint8_t ch = (random() % 50) + 1;
// don't allow same channel twice
for (uint8_t i = 0; i < c; i++) {
if (bind_data.hopchannel[i] == ch) {
goto again;
}
}
// don't allow frequencies higher then tx_config.max_frequency
uint32_t real_frequency = bind_data.rf_frequency + ch * bind_data.rf_channel_spacing * 10000;
if (real_frequency > tx_config.max_frequency) {
goto again;
}
bind_data.hopchannel[c] = ch;
}
}
void txWriteEeprom()
{
accessEEPROM(0,true);
accessEEPROM(1,true);
}
void txReadEeprom()
{
if ((!accessEEPROM(0, false)) || (!accessEEPROM(1, false))) {
txInitDefaults();
bindInitDefaults();
bindRandomize();
txWriteEeprom();
}
}
#endif
// non linear mapping
// 0 - 0
// 1-99 - 100ms - 9900ms (100ms res)
// 100-189 - 10s - 99s (1s res)
// 190-209 - 100s - 290s (10s res)
// 210-255 - 5m - 50m (1m res)
uint32_t delayInMs(uint16_t d)
{
uint32_t ms;
if (d < 100) {
ms = d;
} else if (d < 190) {
ms = (d - 90) * 10UL;
} else if (d < 210) {
ms = (d - 180) * 100UL;
} else {
ms = (d - 205) * 600UL;
}
return ms * 100UL;
}
// non linear mapping
// 0-89 - 10s - 99s
// 90-109 - 100s - 290s (10s res)
// 110-255 - 5m - 150m (1m res)
uint32_t delayInMsLong(uint8_t d)
{
return delayInMs((uint16_t)d + 100);
}
#if (COMPILE_TX != 1)
// following is only needed on receiver
void failsafeSave(void)
{
accessEEPROM(2, true);
}
void failsafeLoad(void)
{
if (!accessEEPROM(2, false)) {
failsafePPM[0]=0xffff;
}
}
void rxInitDefaults(bool save)
{
#if (BOARD_TYPE == 2)
rx_config.rx_type = RX_FLYTRONM3;
rx_config.pinMapping[0] = PINMAP_PPM;
rx_config.pinMapping[1] = PINMAP_RSSI;
rx_config.pinMapping[2] = 0;
rx_config.pinMapping[3] = PINMAP_ANALOG;
rx_config.pinMapping[4] = PINMAP_ANALOG;
rx_config.pinMapping[5] = PINMAP_RXD;
rx_config.pinMapping[6] = PINMAP_TXD;
#elif (BOARD_TYPE == 3)
uint8_t i;
rx_config.rx_type = RX_FLYTRON8CH;
rx_config.pinMapping[0] = PINMAP_RSSI; // the CH0 on 8ch RX
for (i = 1; i < 9; i++) {
rx_config.pinMapping[i] = i - 1; // default to PWM out
}
rx_config.pinMapping[9] = PINMAP_ANALOG;
rx_config.pinMapping[10] = PINMAP_ANALOG;
rx_config.pinMapping[11] = PINMAP_RXD;
rx_config.pinMapping[12] = PINMAP_TXD;
#elif (BOARD_TYPE == 5)
uint8_t i;
rx_config.rx_type = RX_OLRSNG4CH;
for (i = 0; i < 6; i++) {
rx_config.pinMapping[i] = i; // default to PWM out
}
rx_config.pinMapping[6] = PINMAP_RXD;
rx_config.pinMapping[7] = PINMAP_TXD;
#elif (BOARD_TYPE == 7)
rx_config.rx_type = RX_PTOWER;
rx_config.pinMapping[0] = PINMAP_PPM;
rx_config.pinMapping[1] = PINMAP_SDA;
rx_config.pinMapping[2] = PINMAP_RSSI;
rx_config.pinMapping[3] = PINMAP_SCL;
// Skipping pinMapping[4] as it is NC
rx_config.pinMapping[5] = PINMAP_LLIND;
rx_config.pinMapping[6] = PINMAP_RXD;
rx_config.pinMapping[7] = PINMAP_TXD;
#elif (BOARD_TYPE == 8)
rx_config.rx_type = RX_MICRO;
rx_config.pinMapping[0] = PINMAP_PPM;
rx_config.pinMapping[1] = PINMAP_ANALOG;
rx_config.pinMapping[2] = PINMAP_RSSI;
rx_config.pinMapping[3] = PINMAP_ANALOG;
rx_config.pinMapping[4] = PINMAP_RXD;
rx_config.pinMapping[5] = PINMAP_TXD;
#else
#error INVALID RX BOARD
#endif
rx_config.flags = ALWAYS_BIND;
rx_config.RSSIpwm = 255; // off
rx_config.failsafeDelay = 10; //1s
rx_config.ppmStopDelay = 0;
rx_config.pwmStopDelay = 0;
rx_config.beacon_frequency = DEFAULT_BEACON_FREQUENCY;
rx_config.beacon_deadtime = DEFAULT_BEACON_DEADTIME;
rx_config.beacon_interval = DEFAULT_BEACON_INTERVAL;
rx_config.minsync = 3000;
if (save) {
accessEEPROM(0, true);
failsafePPM[0] = 0xffff;
failsafeSave();
}
}
void rxReadEeprom()
{
if (!accessEEPROM(0, false)) {
rxInitDefaults(1);
}
}
#endif