-
-
Notifications
You must be signed in to change notification settings - Fork 10
/
numpy_2_0_migration_guide.html
1191 lines (995 loc) · 69.4 KB
/
numpy_2_0_migration_guide.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="./" data-theme="light">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>NumPy 2.0 migration guide — NumPy v2.3.dev0 Manual</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "light";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="_static/graphviz.css?v=eafc0fe6" />
<link rel="stylesheet" type="text/css" href="_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="_static/numpy.css?v=f033eccb" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="_static/documentation_options.js?v=0abe57b3"></script>
<script src="_static/doctools.js?v=888ff710"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/clipboard.min.js?v=a7894cd8"></script>
<script src="_static/copybutton.js?v=30646c52"></script>
<script src="_static/design-tabs.js?v=f930bc37"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'numpy_2_0_migration_guide';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://numpy.org/doc/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = 'devdocs';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
true;
</script>
<link rel="icon" href="_static/favicon.ico"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="NumPy license" href="license.html" />
<link rel="prev" title="NumPy 1.3.0 Release Notes" href="release/1.3.0-notes.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="2.3.dev0" />
<meta name="docbuild:last-update" content="Jan 06, 2025"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="light">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="index.html">
<img src="_static/numpylogo.svg" class="logo__image only-light" alt="NumPy v2.3.dev0 Manual - Home"/>
<img src="_static/numpylogo_dark.svg" class="logo__image only-dark pst-js-only" alt="NumPy v2.3.dev0 Manual - Home"/>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="user/index.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="reference/index.html">
API reference
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="building/index.html">
Building from source
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="dev/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="release.html">
Release notes
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://numpy.org/numpy-tutorials/">
Learn
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button"
data-bs-toggle="dropdown" aria-expanded="false"
aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-external" href="https://numpy.org/neps">
NEPs
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button></div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="user/index.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="reference/index.html">
API reference
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="building/index.html">
Building from source
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="dev/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="release.html">
Release notes
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://numpy.org/numpy-tutorials/">
Learn
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://numpy.org/neps">
NEPs
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button></div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="user/whatisnumpy.html">What is NumPy?</a></li>
<li class="toctree-l1"><a class="reference external" href="https://numpy.org/install/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="user/quickstart.html">NumPy quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="user/absolute_beginners.html">NumPy: the absolute basics for beginners</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Fundamentals and usage</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="user/basics.html">NumPy fundamentals</a></li>
</ul>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="user/numpy-for-matlab-users.html">NumPy for MATLAB users</a></li>
<li class="toctree-l1"><a class="reference external" href="https://numpy.org/numpy-tutorials/">NumPy tutorials</a></li>
<li class="toctree-l1"><a class="reference internal" href="user/howtos_index.html">NumPy how-tos</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Advanced usage and interoperability</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="user/c-info.html">Using NumPy C-API</a></li>
<li class="toctree-l1"><a class="reference internal" href="f2py/index.html">F2PY user guide and reference manual</a></li>
<li class="toctree-l1"><a class="reference internal" href="dev/underthehood.html">Under-the-hood documentation for developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="user/basics.interoperability.html">Interoperability with NumPy</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Extras</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="glossary.html">Glossary</a></li>
<li class="toctree-l1"><a class="reference internal" href="release.html">Release notes</a></li>
<li class="toctree-l1 current active"><a class="current reference internal" href="#">NumPy 2.0 migration guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="license.html">NumPy license</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
<div class="sidebar-primary-item">
<div id="ethical-ad-placement"
class="flat"
data-ea-publisher="readthedocs"
data-ea-type="readthedocs-sidebar"
data-ea-manual="true">
</div></div>
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="user/index.html" class="nav-link">NumPy user guide</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">NumPy 2.0 migration guide</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="numpy-2-0-migration-guide">
<span id="numpy-2-migration-guide"></span><h1>NumPy 2.0 migration guide<a class="headerlink" href="#numpy-2-0-migration-guide" title="Link to this heading">#</a></h1>
<p>This document contains a set of instructions on how to update your code to
work with NumPy 2.0. It covers changes in NumPy’s Python and C APIs.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>Note that NumPy 2.0 also breaks binary compatibility - if you are
distributing binaries for a Python package that depends on NumPy’s C API,
please see <a class="reference internal" href="dev/depending_on_numpy.html#numpy-2-abi-handling"><span class="std std-ref">NumPy 2.0-specific advice</span></a>.</p>
</div>
<section id="ruff-plugin">
<h2>Ruff plugin<a class="headerlink" href="#ruff-plugin" title="Link to this heading">#</a></h2>
<p>Many of the changes covered in the 2.0 release notes and in this migration
guide can be automatically adapted in downstream code with a dedicated
<a class="reference external" href="https://docs.astral.sh/ruff/">Ruff</a> rule, namely rule
<a class="reference external" href="https://docs.astral.sh/ruff/rules/numpy2-deprecation/">NPY201</a>.</p>
<p>You should install <code class="docutils literal notranslate"><span class="pre">ruff>=0.4.8</span></code> and add the <code class="docutils literal notranslate"><span class="pre">NPY201</span></code> rule to your
<code class="docutils literal notranslate"><span class="pre">pyproject.toml</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="n">tool</span><span class="o">.</span><span class="n">ruff</span><span class="o">.</span><span class="n">lint</span><span class="p">]</span>
<span class="n">select</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"NPY201"</span><span class="p">]</span>
</pre></div>
</div>
<p>You can also apply the NumPy 2.0 rule directly from the command line:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>$ ruff check path/to/code/ --select NPY201
</pre></div>
</div>
</section>
<section id="changes-to-numpy-data-type-promotion">
<span id="migration-promotion-changes"></span><h2>Changes to NumPy data type promotion<a class="headerlink" href="#changes-to-numpy-data-type-promotion" title="Link to this heading">#</a></h2>
<p>NumPy 2.0 changes promotion (the result of combining dissimilar data types)
as per <a class="reference external" href="https://numpy.org/neps/nep-0050-scalar-promotion.html#nep50" title="(in NumPy Enhancement Proposals)"><span class="xref std std-ref">NEP 50</span></a>. Please see the NEP for details on this change.
It includes a table of example changes and a backwards compatibility section.</p>
<p>The largest backwards compatibility change is that the precision of scalars
is now preserved consistently. Two examples are:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">np.float32(3)</span> <span class="pre">+</span> <span class="pre">3.</span></code> now returns a float32 when it previously returned
a float64.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">np.array([3],</span> <span class="pre">dtype=np.float32)</span> <span class="pre">+</span> <span class="pre">np.float64(3)</span></code> will now return a float64
array. (The higher precision of the scalar is not ignored.)</p></li>
</ul>
<p>For floating point values, this can lead to lower precision results when
working with scalars. For integers, errors or overflows are possible.</p>
<p>To solve this, you may cast explicitly. Very often, it may also be a good
solution to ensure you are working with Python scalars via <code class="docutils literal notranslate"><span class="pre">int()</span></code>,
<code class="docutils literal notranslate"><span class="pre">float()</span></code>, or <code class="docutils literal notranslate"><span class="pre">numpy_scalar.item()</span></code>.</p>
<p>To track down changes, you can enable emitting warnings for changed behavior
(use <code class="docutils literal notranslate"><span class="pre">warnings.simplefilter</span></code> to raise it as an error for a traceback):</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">np</span><span class="o">.</span><span class="n">_set_promotion_state</span><span class="p">(</span><span class="s2">"weak_and_warn"</span><span class="p">)</span>
</pre></div>
</div>
<p>which is useful during testing. Unfortunately,
running this may flag many changes that are irrelevant in practice.</p>
</section>
<section id="windows-default-integer">
<span id="migration-windows-int64"></span><h2>Windows default integer<a class="headerlink" href="#windows-default-integer" title="Link to this heading">#</a></h2>
<p>The default integer used by NumPy is now 64bit on all 64bit systems (and
32bit on 32bit system). For historic reasons related to Python 2 it was
previously equivalent to the C <code class="docutils literal notranslate"><span class="pre">long</span></code> type.
The default integer is now equivalent to <code class="docutils literal notranslate"><span class="pre">np.intp</span></code>.</p>
<p>Most end-users should not be affected by this change. Some operations will
use more memory, but some operations may actually become faster.
If you experience issues due to calling a library written in a compiled
language it may help to explicitly cast to a <code class="docutils literal notranslate"><span class="pre">long</span></code>, for example with:
<code class="docutils literal notranslate"><span class="pre">arr</span> <span class="pre">=</span> <span class="pre">arr.astype("long",</span> <span class="pre">copy=False)</span></code>.</p>
<p>Libraries interfacing with compiled code that are written in C, Cython, or
a similar language may require updating to accommodate user input if they
are using the <code class="docutils literal notranslate"><span class="pre">long</span></code> or equivalent type on the C-side.
In this case, you may wish to use <code class="docutils literal notranslate"><span class="pre">intp</span></code> and cast user input or support
both <code class="docutils literal notranslate"><span class="pre">long</span></code> and <code class="docutils literal notranslate"><span class="pre">intp</span></code> (to better support NumPy 1.x as well).
When creating a new integer array in C or Cython, the new <code class="docutils literal notranslate"><span class="pre">NPY_DEFAULT_INT</span></code>
macro will evaluate to either <code class="docutils literal notranslate"><span class="pre">NPY_LONG</span></code> or <code class="docutils literal notranslate"><span class="pre">NPY_INTP</span></code> depending on the
NumPy version.</p>
<p>Note that the NumPy random API is not affected by this change.</p>
</section>
<section id="c-api-changes">
<h2>C-API Changes<a class="headerlink" href="#c-api-changes" title="Link to this heading">#</a></h2>
<p>Some definitions were removed or replaced due to being outdated or
unmaintainable. Some new API definitions will evaluate differently at
runtime between NumPy 2.0 and NumPy 1.x.
Some are defined in <code class="docutils literal notranslate"><span class="pre">numpy/_core/include/numpy/npy_2_compat.h</span></code>
(for example <code class="docutils literal notranslate"><span class="pre">NPY_DEFAULT_INT</span></code>) which can be vendored in full or part
to have the definitions available when compiling against NumPy 1.x.</p>
<p>If necessary, <code class="docutils literal notranslate"><span class="pre">PyArray_RUNTIME_VERSION</span> <span class="pre">>=</span> <span class="pre">NPY_2_0_API_VERSION</span></code> can be
used to explicitly implement different behavior on NumPy 1.x and 2.0.
(The compat header defines it in a way compatible with such use.)</p>
<p>Please let us know if you require additional workarounds here.</p>
<section id="the-pyarray-descr-struct-has-been-changed">
<span id="migration-c-descr"></span><h3>The <code class="docutils literal notranslate"><span class="pre">PyArray_Descr</span></code> struct has been changed<a class="headerlink" href="#the-pyarray-descr-struct-has-been-changed" title="Link to this heading">#</a></h3>
<p>One of the most impactful C-API changes is that the <code class="docutils literal notranslate"><span class="pre">PyArray_Descr</span></code> struct
is now more opaque to allow us to add additional flags and have
itemsizes not limited by the size of <code class="docutils literal notranslate"><span class="pre">int</span></code> as well as allow improving
structured dtypes in the future and not burden new dtypes with their fields.</p>
<p>Code which only uses the type number and other initial fields is unaffected.
Most code will hopefully mainly access the <code class="docutils literal notranslate"><span class="pre">->elsize</span></code> field, when the
dtype/descriptor itself is attached to an array (e.g. <code class="docutils literal notranslate"><span class="pre">arr->descr->elsize</span></code>)
this is best replaced with <code class="docutils literal notranslate"><span class="pre">PyArray_ITEMSIZE(arr)</span></code>.</p>
<p>Where not possible, new accessor functions are required:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">PyDataType_ELSIZE</span></code> and <code class="docutils literal notranslate"><span class="pre">PyDataType_SET_ELSIZE</span></code> (note that the result
is now <code class="docutils literal notranslate"><span class="pre">npy_intp</span></code> and not <code class="docutils literal notranslate"><span class="pre">int</span></code>).</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">PyDataType_ALIGNMENT</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">PyDataType_FIELDS</span></code>, <code class="docutils literal notranslate"><span class="pre">PyDataType_NAMES</span></code>, <code class="docutils literal notranslate"><span class="pre">PyDataType_SUBARRAY</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">PyDataType_C_METADATA</span></code></p></li>
</ul>
<p>Cython code should use Cython 3, in which case the change is transparent.
(Struct access is available for elsize and alignment when compiling only for
NumPy 2.)</p>
<p>For compiling with both 1.x and 2.x if you use these new accessors it is
unfortunately necessary to either define them locally via a macro like:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1">#if NPY_ABI_VERSION < 0x02000000</span>
<span class="c1">#define PyDataType_ELSIZE(descr) ((descr)->elsize)</span>
<span class="c1">#endif</span>
</pre></div>
</div>
<p>or adding <code class="docutils literal notranslate"><span class="pre">npy2_compat.h</span></code> into your code base and explicitly include it
when compiling with NumPy 1.x (as they are new API).
Including the file has no effect on NumPy 2.</p>
<p>Please do not hesitate to open a NumPy issue, if you require assistance or
the provided functions are not sufficient.</p>
<p><strong>Custom User DTypes:</strong>
Existing user dtypes must now use <a class="reference internal" href="reference/c-api/types-and-structures.html#c.PyArray_DescrProto" title="PyArray_DescrProto"><code class="xref c c-type docutils literal notranslate"><span class="pre">PyArray_DescrProto</span></code></a> to define
their dtype and slightly modify the code. See note in <a class="reference internal" href="reference/c-api/array.html#c.PyArray_RegisterDataType" title="PyArray_RegisterDataType"><code class="xref c c-func docutils literal notranslate"><span class="pre">PyArray_RegisterDataType</span></code></a>.</p>
</section>
<section id="functionality-moved-to-headers-requiring-import-array">
<h3>Functionality moved to headers requiring <code class="docutils literal notranslate"><span class="pre">import_array()</span></code><a class="headerlink" href="#functionality-moved-to-headers-requiring-import-array" title="Link to this heading">#</a></h3>
<p>If you previously included only <code class="docutils literal notranslate"><span class="pre">ndarraytypes.h</span></code> you may find that some
functionality is not available anymore and requires the inclusion of
<code class="docutils literal notranslate"><span class="pre">ndarrayobject.h</span></code> or similar.
This include is also needed when vendoring <code class="docutils literal notranslate"><span class="pre">npy_2_compat.h</span></code> into your own
codebase to allow use of the new definitions when compiling with NumPy 1.x.</p>
<p>Functionality which previously did not require import includes:</p>
<ul class="simple">
<li><p>Functions to access dtype flags: <code class="docutils literal notranslate"><span class="pre">PyDataType_FLAGCHK</span></code>,
<code class="docutils literal notranslate"><span class="pre">PyDataType_REFCHK</span></code>, and the related <code class="docutils literal notranslate"><span class="pre">NPY_BEGIN_THREADS_DESCR</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">PyArray_GETITEM</span></code> and <code class="docutils literal notranslate"><span class="pre">PyArray_SETITEM</span></code>.</p></li>
</ul>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>It is important that the <code class="docutils literal notranslate"><span class="pre">import_array()</span></code> mechanism is used to ensure
that the full NumPy API is accessible when using the <code class="docutils literal notranslate"><span class="pre">npy_2_compat.h</span></code>
header. In most cases your extension module probably already calls it.
However, if not we have added <code class="docutils literal notranslate"><span class="pre">PyArray_ImportNumPyAPI()</span></code> as a preferable
way to ensure the NumPy API is imported. This function is light-weight
when called multiple times so that you may insert it wherever it may be
needed (if you wish to avoid setting it up at module import).</p>
</div>
</section>
<section id="increased-maximum-number-of-dimensions">
<span id="migration-maxdims"></span><h3>Increased maximum number of dimensions<a class="headerlink" href="#increased-maximum-number-of-dimensions" title="Link to this heading">#</a></h3>
<p>The maximum number of dimensions (and arguments) was increased to 64. This
affects the <code class="docutils literal notranslate"><span class="pre">NPY_MAXDIMS</span></code> and <code class="docutils literal notranslate"><span class="pre">NPY_MAXARGS</span></code> macros.
It may be good to review their use, and we generally encourage you to
not use these macros (especially <code class="docutils literal notranslate"><span class="pre">NPY_MAXARGS</span></code>), so that a future version of
NumPy can remove this limitation on the number of dimensions.</p>
<p><code class="docutils literal notranslate"><span class="pre">NPY_MAXDIMS</span></code> was also used to signal <code class="docutils literal notranslate"><span class="pre">axis=None</span></code> in the C-API, including
the <code class="docutils literal notranslate"><span class="pre">PyArray_AxisConverter</span></code>.
The latter will return <code class="docutils literal notranslate"><span class="pre">-2147483648</span></code> as an axis (the smallest integer value).
Other functions may error with
<code class="docutils literal notranslate"><span class="pre">AxisError:</span> <span class="pre">axis</span> <span class="pre">64</span> <span class="pre">is</span> <span class="pre">out</span> <span class="pre">of</span> <span class="pre">bounds</span> <span class="pre">for</span> <span class="pre">array</span> <span class="pre">of</span> <span class="pre">dimension</span></code> in which
case you need to pass <code class="docutils literal notranslate"><span class="pre">NPY_RAVEL_AXIS</span></code> instead of <code class="docutils literal notranslate"><span class="pre">NPY_MAXDIMS</span></code>.
<code class="docutils literal notranslate"><span class="pre">NPY_RAVEL_AXIS</span></code> is defined in the <code class="docutils literal notranslate"><span class="pre">npy_2_compat.h</span></code> header and runtime
dependent (mapping to 32 on NumPy 1.x and <code class="docutils literal notranslate"><span class="pre">-2147483648</span></code> on NumPy 2.x).</p>
</section>
<section id="complex-types-underlying-type-changes">
<h3>Complex types - Underlying type changes<a class="headerlink" href="#complex-types-underlying-type-changes" title="Link to this heading">#</a></h3>
<p>The underlying C types for all of the complex types have been changed to use
native C99 types. While the memory layout of those types remains identical
to the types used in NumPy 1.x, the API is slightly different, since direct
field access (like <code class="docutils literal notranslate"><span class="pre">c.real</span></code> or <code class="docutils literal notranslate"><span class="pre">c.imag</span></code>) is no longer possible.</p>
<p>It is recommended to use the functions <code class="docutils literal notranslate"><span class="pre">npy_creal</span></code> and <code class="docutils literal notranslate"><span class="pre">npy_cimag</span></code>
(and the corresponding float and long double variants) to retrieve
the real or imaginary part of a complex number, as these will work with both
NumPy 1.x and with NumPy 2.x. New functions <code class="docutils literal notranslate"><span class="pre">npy_csetreal</span></code> and
<code class="docutils literal notranslate"><span class="pre">npy_csetimag</span></code>, along with compatibility macros <code class="docutils literal notranslate"><span class="pre">NPY_CSETREAL</span></code> and
<code class="docutils literal notranslate"><span class="pre">NPY_CSETIMAG</span></code> (and the corresponding float and long double variants),
have been added for setting the real or imaginary part.</p>
<p>The underlying type remains a struct under C++ (all of the above still remains
valid).</p>
<p>This has implications for Cython. It is recommended to always use the native
typedefs <code class="docutils literal notranslate"><span class="pre">cfloat_t</span></code>, <code class="docutils literal notranslate"><span class="pre">cdouble_t</span></code>, <code class="docutils literal notranslate"><span class="pre">clongdouble_t</span></code> rather than the NumPy
types <code class="docutils literal notranslate"><span class="pre">npy_cfloat</span></code>, etc, unless you have to interface with C code written
using the NumPy types. You can still write cython code using the <code class="docutils literal notranslate"><span class="pre">c.real</span></code> and
<code class="docutils literal notranslate"><span class="pre">c.imag</span></code> attributes (using the native typedefs), but you can no longer use
in-place operators <code class="docutils literal notranslate"><span class="pre">c.imag</span> <span class="pre">+=</span> <span class="pre">1</span></code> in Cython’s c++ mode.</p>
<p>Because NumPy 2 now includes <code class="docutils literal notranslate"><span class="pre">complex.h</span></code> code that uses a variable named
<code class="docutils literal notranslate"><span class="pre">I</span></code> may see an error such as</p>
<p>to use the name <code class="docutils literal notranslate"><span class="pre">I</span></code> requires an <code class="docutils literal notranslate"><span class="pre">#undef</span> <span class="pre">I</span></code> now.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>NumPy 2.0.1 briefly included the <code class="docutils literal notranslate"><span class="pre">#undef</span> <span class="pre">I</span></code> to help users not already
including <code class="docutils literal notranslate"><span class="pre">complex.h</span></code>.</p>
</div>
</section>
</section>
<section id="changes-to-namespaces">
<h2>Changes to namespaces<a class="headerlink" href="#changes-to-namespaces" title="Link to this heading">#</a></h2>
<p>In NumPy 2.0 certain functions, modules, and constants were moved or removed
to make the NumPy namespace more user-friendly by removing unnecessary or
outdated functionality and clarifying which parts of NumPy are considered
private.
Please see the tables below for guidance on migration. For most changes this
means replacing it with a backwards compatible alternative.</p>
<p>Please refer to <a class="reference external" href="https://numpy.org/neps/nep-0052-python-api-cleanup.html#nep52" title="(in NumPy Enhancement Proposals)"><span>NEP 52 — Python API cleanup for NumPy 2.0</span></a> for more details.</p>
<section id="main-namespace">
<h3>Main namespace<a class="headerlink" href="#main-namespace" title="Link to this heading">#</a></h3>
<p>About 100 members of the main <code class="docutils literal notranslate"><span class="pre">np</span></code> namespace have been deprecated, removed, or
moved to a new place. It was done to reduce clutter and establish only one way to
access a given attribute. The table below shows members that have been removed:</p>
<div class="pst-scrollable-table-container"><table class="table">
<thead>
<tr class="row-odd"><th class="head"><p>removed member</p></th>
<th class="head"><p>migration guideline</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>add_docstring</p></td>
<td><p>It’s still available as <code class="docutils literal notranslate"><span class="pre">np.lib.add_docstring</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p>add_newdoc</p></td>
<td><p>It’s still available as <code class="docutils literal notranslate"><span class="pre">np.lib.add_newdoc</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p>add_newdoc_ufunc</p></td>
<td><p>It’s an internal function and doesn’t have a replacement.</p></td>
</tr>
<tr class="row-odd"><td><p>alltrue</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.all</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>asfarray</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.asarray</span></code> with a float dtype instead.</p></td>
</tr>
<tr class="row-odd"><td><p>byte_bounds</p></td>
<td><p>Now it’s available under <code class="docutils literal notranslate"><span class="pre">np.lib.array_utils.byte_bounds</span></code></p></td>
</tr>
<tr class="row-even"><td><p>cast</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.asarray(arr,</span> <span class="pre">dtype=dtype)</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>cfloat</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.complex128</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>charrarray</p></td>
<td><p>It’s still available as <code class="docutils literal notranslate"><span class="pre">np.char.chararray</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p>clongfloat</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.clongdouble</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>compare_chararrays</p></td>
<td><p>It’s still available as <code class="docutils literal notranslate"><span class="pre">np.char.compare_chararrays</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p>compat</p></td>
<td><p>There’s no replacement, as Python 2 is no longer supported.</p></td>
</tr>
<tr class="row-even"><td><p>complex_</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.complex128</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>cumproduct</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.cumprod</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>DataSource</p></td>
<td><p>It’s still available as <code class="docutils literal notranslate"><span class="pre">np.lib.npyio.DataSource</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p>deprecate</p></td>
<td><p>Emit <code class="docutils literal notranslate"><span class="pre">DeprecationWarning</span></code> with <code class="docutils literal notranslate"><span class="pre">warnings.warn</span></code> directly,
or use <code class="docutils literal notranslate"><span class="pre">typing.deprecated</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p>deprecate_with_doc</p></td>
<td><p>Emit <code class="docutils literal notranslate"><span class="pre">DeprecationWarning</span></code> with <code class="docutils literal notranslate"><span class="pre">warnings.warn</span></code> directly,
or use <code class="docutils literal notranslate"><span class="pre">typing.deprecated</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p>disp</p></td>
<td><p>Use your own printing function instead.</p></td>
</tr>
<tr class="row-even"><td><p>fastCopyAndTranspose</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">arr.T.copy()</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>find_common_type</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">numpy.promote_types</span></code> or <code class="docutils literal notranslate"><span class="pre">numpy.result_type</span></code> instead.
To achieve semantics for the <code class="docutils literal notranslate"><span class="pre">scalar_types</span></code> argument,
use <code class="docutils literal notranslate"><span class="pre">numpy.result_type</span></code> and pass the Python values <code class="docutils literal notranslate"><span class="pre">0</span></code>,
<code class="docutils literal notranslate"><span class="pre">0.0</span></code>, or <code class="docutils literal notranslate"><span class="pre">0j</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p>format_parser</p></td>
<td><p>It’s still available as <code class="docutils literal notranslate"><span class="pre">np.rec.format_parser</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p>get_array_wrap</p></td>
<td></td>
</tr>
<tr class="row-even"><td><p>float_</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.float64</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>geterrobj</p></td>
<td><p>Use the np.errstate context manager instead.</p></td>
</tr>
<tr class="row-even"><td><p>Inf</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.inf</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>Infinity</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.inf</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>infty</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.inf</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>issctype</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">issubclass(rep,</span> <span class="pre">np.generic)</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>issubclass_</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">issubclass</span></code> builtin instead.</p></td>
</tr>
<tr class="row-odd"><td><p>issubsctype</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.issubdtype</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>mat</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.asmatrix</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>maximum_sctype</p></td>
<td><p>Use a specific dtype instead. You should avoid relying
on any implicit mechanism and select the largest dtype of
a kind explicitly in the code.</p></td>
</tr>
<tr class="row-even"><td><p>NaN</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.nan</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>nbytes</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.dtype(<dtype>).itemsize</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>NINF</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">-np.inf</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>NZERO</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">-0.0</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>longcomplex</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.clongdouble</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>longfloat</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.longdouble</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>lookfor</p></td>
<td><p>Search NumPy’s documentation directly.</p></td>
</tr>
<tr class="row-odd"><td><p>obj2sctype</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.dtype(obj).type</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>PINF</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.inf</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>product</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.prod</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>PZERO</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">0.0</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>recfromcsv</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.genfromtxt</span></code> with comma delimiter instead.</p></td>
</tr>
<tr class="row-even"><td><p>recfromtxt</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.genfromtxt</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>round_</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.round</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>safe_eval</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">ast.literal_eval</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>sctype2char</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.dtype(obj).char</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>sctypes</p></td>
<td><p>Access dtypes explicitly instead.</p></td>
</tr>
<tr class="row-odd"><td><p>seterrobj</p></td>
<td><p>Use the np.errstate context manager instead.</p></td>
</tr>
<tr class="row-even"><td><p>set_numeric_ops</p></td>
<td><p>For the general case, use <code class="docutils literal notranslate"><span class="pre">PyUFunc_ReplaceLoopBySignature</span></code>.
For ndarray subclasses, define the <code class="docutils literal notranslate"><span class="pre">__array_ufunc__</span></code> method
and override the relevant ufunc.</p></td>
</tr>
<tr class="row-odd"><td><p>set_string_function</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.set_printoptions</span></code> instead with a formatter
for custom printing of NumPy objects.</p></td>
</tr>
<tr class="row-even"><td><p>singlecomplex</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.complex64</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>string_</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.bytes_</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>sometrue</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.any</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>source</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">inspect.getsource</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>tracemalloc_domain</p></td>
<td><p>It’s now available from <code class="docutils literal notranslate"><span class="pre">np.lib</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p>unicode_</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.str_</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>who</p></td>
<td><p>Use an IDE variable explorer or <code class="docutils literal notranslate"><span class="pre">locals()</span></code> instead.</p></td>
</tr>
</tbody>
</table>
</div>
<p>If the table doesn’t contain an item that you were using but was removed in <code class="docutils literal notranslate"><span class="pre">2.0</span></code>,
then it means it was a private member. You should either use the existing API or,
in case it’s infeasible, reach out to us with a request to restore the removed entry.</p>
<p>The next table presents deprecated members, which will be removed in a release after <code class="docutils literal notranslate"><span class="pre">2.0</span></code>:</p>
<div class="pst-scrollable-table-container"><table class="table">
<thead>
<tr class="row-odd"><th class="head"><p>deprecated member</p></th>
<th class="head"><p>migration guideline</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>in1d</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.isin</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>row_stack</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.vstack</span></code> instead (<code class="docutils literal notranslate"><span class="pre">row_stack</span></code> was an alias for <code class="docutils literal notranslate"><span class="pre">vstack</span></code>).</p></td>
</tr>
<tr class="row-even"><td><p>trapz</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.trapezoid</span></code> or a <code class="docutils literal notranslate"><span class="pre">scipy.integrate</span></code> function instead.</p></td>
</tr>
</tbody>
</table>
</div>
<p>Finally, a set of internal enums has been removed. As they weren’t used in
downstream libraries we don’t provide any information on how to replace them:</p>
<p>[<code class="docutils literal notranslate"><span class="pre">FLOATING_POINT_SUPPORT</span></code>, <code class="docutils literal notranslate"><span class="pre">FPE_DIVIDEBYZERO</span></code>, <code class="docutils literal notranslate"><span class="pre">FPE_INVALID</span></code>, <code class="docutils literal notranslate"><span class="pre">FPE_OVERFLOW</span></code>,
<code class="docutils literal notranslate"><span class="pre">FPE_UNDERFLOW</span></code>, <code class="docutils literal notranslate"><span class="pre">UFUNC_BUFSIZE_DEFAULT</span></code>, <code class="docutils literal notranslate"><span class="pre">UFUNC_PYVALS_NAME</span></code>, <code class="docutils literal notranslate"><span class="pre">CLIP</span></code>, <code class="docutils literal notranslate"><span class="pre">WRAP</span></code>,
<code class="docutils literal notranslate"><span class="pre">RAISE</span></code>, <code class="docutils literal notranslate"><span class="pre">BUFSIZE</span></code>, <code class="docutils literal notranslate"><span class="pre">ALLOW_THREADS</span></code>, <code class="docutils literal notranslate"><span class="pre">MAXDIMS</span></code>, <code class="docutils literal notranslate"><span class="pre">MAY_SHARE_EXACT</span></code>,
<code class="docutils literal notranslate"><span class="pre">MAY_SHARE_BOUNDS</span></code>]</p>
</section>
<section id="numpy-lib-namespace">
<h3>numpy.lib namespace<a class="headerlink" href="#numpy-lib-namespace" title="Link to this heading">#</a></h3>
<p>Most of the functions available within <code class="docutils literal notranslate"><span class="pre">np.lib</span></code> are also present in the main
namespace, which is their primary location. To make it unambiguous how to access each
public function, <code class="docutils literal notranslate"><span class="pre">np.lib</span></code> is now empty and contains only a handful of specialized submodules,
classes and functions:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">array_utils</span></code>, <code class="docutils literal notranslate"><span class="pre">format</span></code>, <code class="docutils literal notranslate"><span class="pre">introspect</span></code>, <code class="docutils literal notranslate"><span class="pre">mixins</span></code>, <code class="docutils literal notranslate"><span class="pre">npyio</span></code>
and <code class="docutils literal notranslate"><span class="pre">stride_tricks</span></code> submodules,</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">Arrayterator</span></code> and <code class="docutils literal notranslate"><span class="pre">NumpyVersion</span></code> classes,</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">add_docstring</span></code> and <code class="docutils literal notranslate"><span class="pre">add_newdoc</span></code> functions,</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">tracemalloc_domain</span></code> constant.</p></li>
</ul>
<p>If you get an <code class="docutils literal notranslate"><span class="pre">AttributeError</span></code> when accessing an attribute from <code class="docutils literal notranslate"><span class="pre">np.lib</span></code> you should
try accessing it from the main <code class="docutils literal notranslate"><span class="pre">np</span></code> namespace then. If an item is also missing from
the main namespace, then you’re using a private member. You should either use the existing
API or, in case it’s infeasible, reach out to us with a request to restore the removed entry.</p>
</section>
<section id="numpy-core-namespace">
<h3>numpy.core namespace<a class="headerlink" href="#numpy-core-namespace" title="Link to this heading">#</a></h3>
<p>The <code class="docutils literal notranslate"><span class="pre">np.core</span></code> namespace is now officially private and has been renamed to <code class="docutils literal notranslate"><span class="pre">np._core</span></code>.
The user should never fetch members from the <code class="docutils literal notranslate"><span class="pre">_core</span></code> directly - instead the main
namespace should be used to access the attribute in question. The layout of the <code class="docutils literal notranslate"><span class="pre">_core</span></code>
module might change in the future without notice, contrary to public modules which adhere
to the deprecation period policy. If an item is also missing from the main namespace,
then you should either use the existing API or, in case it’s infeasible, reach out to us
with a request to restore the removed entry.</p>
</section>
<section id="ndarray-and-scalar-methods">
<h3>ndarray and scalar methods<a class="headerlink" href="#ndarray-and-scalar-methods" title="Link to this heading">#</a></h3>
<p>A few methods from <code class="docutils literal notranslate"><span class="pre">np.ndarray</span></code> and <code class="docutils literal notranslate"><span class="pre">np.generic</span></code> scalar classes have been removed.
The table below provides replacements for the removed members:</p>
<div class="pst-scrollable-table-container"><table class="table">
<thead>
<tr class="row-odd"><th class="head"><p>expired member</p></th>
<th class="head"><p>migration guideline</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>newbyteorder</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">arr.view(arr.dtype.newbyteorder(order))</span></code> instead.</p></td>
</tr>
<tr class="row-odd"><td><p>ptp</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">np.ptp(arr,</span> <span class="pre">...)</span></code> instead.</p></td>
</tr>
<tr class="row-even"><td><p>setitem</p></td>
<td><p>Use <code class="docutils literal notranslate"><span class="pre">arr[index]</span> <span class="pre">=</span> <span class="pre">value</span></code> instead.</p></td>
</tr>
</tbody>
</table>
</div>
</section>
<section id="numpy-strings-namespace">
<h3>numpy.strings namespace<a class="headerlink" href="#numpy-strings-namespace" title="Link to this heading">#</a></h3>
<p>A new <a class="reference internal" href="reference/routines.strings.html#module-numpy.strings" title="numpy.strings"><code class="xref py py-obj docutils literal notranslate"><span class="pre">numpy.strings</span></code></a> namespace has been created, where most of the string
operations are implemented as ufuncs. The old <a class="reference internal" href="reference/routines.char.html#module-numpy.char" title="numpy.char"><code class="xref py py-obj docutils literal notranslate"><span class="pre">numpy.char</span></code></a> namespace still is
available, and, wherever possible, uses the new ufuncs for greater performance.
We recommend using the <a class="reference internal" href="reference/routines.strings.html#module-numpy.strings" title="numpy.strings"><code class="xref py py-obj docutils literal notranslate"><span class="pre">strings</span></code></a> functions going forward. The