-
Notifications
You must be signed in to change notification settings - Fork 6
/
nep-0021-advanced-indexing.html
1223 lines (1034 loc) · 87.6 KB
/
nep-0021-advanced-indexing.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="./" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>NEP 21 — Simplified and explicit advanced indexing — NumPy Enhancement Proposals</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=26a4bc78f4c0ddb94549" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=26a4bc78f4c0ddb94549" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=26a4bc78f4c0ddb94549"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=26a4bc78f4c0ddb94549" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=26a4bc78f4c0ddb94549" />
<script src="_static/documentation_options.js?v=7f41d439"></script>
<script src="_static/doctools.js?v=888ff710"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'nep-0021-advanced-indexing';</script>
<link rel="icon" href="_static/favicon.ico"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="NEP 24 — Missing data functionality - alternative 1 to NEP 12" href="nep-0024-missing-data-2.html" />
<link rel="prev" title="NEP 12 — Missing data functionality in NumPy" href="nep-0012-missing-data.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="" />
<meta name="docbuild:last-update" content="Nov 26, 2024"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="content.html">
<img src="_static/numpylogo.svg" class="logo__image only-light" alt="NumPy Enhancement Proposals - Home"/>
<img src="_static/numpylogo.svg" class="logo__image only-dark pst-js-only" alt="NumPy Enhancement Proposals - Home"/>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wish list
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wish list
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="scope.html">The Scope of NumPy</a></li>
<li class="toctree-l1"><a class="reference internal" href="roadmap.html">Current roadmap</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">Wish list</a></li>
</ul>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="meta.html">Meta-NEPs (NEPs about NEPs or active Processes)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0000.html">NEP 0 — Purpose and process</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0023-backwards-compatibility.html">NEP 23 — Backwards compatibility and deprecation policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0036-fair-play.html">NEP 36 — Fair play</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0045-c_style_guide.html">NEP 45 — C style guide</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0046-sponsorship-guidelines.html">NEP 46 — NumPy sponsorship guidelines</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0048-spending-project-funds.html">NEP 48 — Spending NumPy project funds</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-template.html">NEP X — Template and instructions</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="provisional.html">Provisional NEPs (provisionally accepted; interface may change)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="simple">
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="accepted.html">Accepted NEPs (implementation in progress)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0041-improved-dtype-support.html">NEP 41 — First step towards a new datatype system</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0042-new-dtypes.html">NEP 42 — New and extensible DTypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0044-restructuring-numpy-docs.html">NEP 44 — Restructuring the NumPy documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0051-scalar-representation.html">NEP 51 — Changing the representation of NumPy scalars</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="open.html">Open NEPs (under consideration)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0043-extensible-ufuncs.html">NEP 43 — Enhancing the extensibility of UFuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0053-c-abi-evolution.html">NEP 53 — Evolving the NumPy C-API for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0054-simd-cpp-highway.html">NEP 54 — SIMD infrastructure evolution: adopting Google Highway when moving to C++?</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="finished.html">Finished NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0001-npy-format.html">NEP 1 — A simple file format for NumPy arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0005-generalized-ufuncs.html">NEP 5 — Generalized universal functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0007-datetime-proposal.html">NEP 7 — A proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0010-new-iterator-ufunc.html">NEP 10 — Optimizing iterator/UFunc performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0013-ufunc-overrides.html">NEP 13 — A mechanism for overriding Ufuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0014-dropping-python2.7-proposal.html">NEP 14 — Plan for dropping Python 2.7 support</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0015-merge-multiarray-umath.html">NEP 15 — Merging multiarray and umath</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0018-array-function-protocol.html">NEP 18 — A dispatch mechanism for NumPy's high level array functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0019-rng-policy.html">NEP 19 — Random number generator policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0020-gufunc-signature-enhancement.html">NEP 20 — Expansion of generalized universal function signatures</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0022-ndarray-duck-typing-overview.html">NEP 22 — Duck typing for NumPy arrays – high level overview</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0027-zero-rank-arrarys.html">NEP 27 — Zero rank arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0028-website-redesign.html">NEP 28 — numpy.org website redesign</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0029-deprecation_policy.html">NEP 29 — Recommend Python and NumPy version support as a community policy standard</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0032-remove-financial-functions.html">NEP 32 — Remove the financial functions from NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0034-infer-dtype-is-object.html">NEP 34 — Disallow inferring ``dtype=object`` from sequences</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0035-array-creation-dispatch-with-array-function.html">NEP 35 — Array creation dispatching with __array_function__</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0038-SIMD-optimizations.html">NEP 38 — Using SIMD optimization instructions for performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0040-legacy-datatype-impl.html">NEP 40 — Legacy datatype implementation in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0049.html">NEP 49 — Data allocation strategies</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0050-scalar-promotion.html">NEP 50 — Promotion rules for Python scalars</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0052-python-api-cleanup.html">NEP 52 — Python API cleanup for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0055-string_dtype.html">NEP 55 — Add a UTF-8 variable-width string DType to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0056-array-api-main-namespace.html">NEP 56 — Array API standard support in NumPy's main namespace</a></li>
</ul>
</details></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="deferred.html">Deferred and Superseded NEPs</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="nep-0002-warnfix.html">NEP 2 — A proposal to build numpy without warning with a big set of warning flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0003-math_config_clean.html">NEP 3 — Cleaning the math configuration of numpy.core</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0004-datetime-proposal3.html">NEP 4 — A (third) proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0006-newbugtracker.html">NEP 6 — Replacing Trac with a different bug tracker</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0008-groupby_additions.html">NEP 8 — A proposal for adding groupby functionality to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0009-structured_array_extensions.html">NEP 9 — Structured array extensions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0011-deferred-ufunc-evaluation.html">NEP 11 — Deferred UFunc evaluation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0012-missing-data.html">NEP 12 — Missing data functionality in NumPy</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">NEP 21 — Simplified and explicit advanced indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0024-missing-data-2.html">NEP 24 — Missing data functionality - alternative 1 to NEP 12</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0025-missing-data-3.html">NEP 25 — NA support via special dtypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0026-missing-data-summary.html">NEP 26 — Summary of missing data NEPs and discussion</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0030-duck-array-protocol.html">NEP 30 — Duck typing for NumPy arrays - implementation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0031-uarray.html">NEP 31 — Context-local and global overrides of the NumPy API</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0037-array-module.html">NEP 37 — A dispatch protocol for NumPy-like modules</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0047-array-api-standard.html">NEP 47 — Adopting the array API standard</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="rejected.html">Rejected and Withdrawn NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0016-abstract-array.html">NEP 16 — An abstract base class for identifying "duck arrays"</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0017-split-out-maskedarray.html">NEP 17 — Split out masked arrays</a></li>
</ul>
</details></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="content.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">Roadmap & NumPy enhancement proposals</a></li>
<li class="breadcrumb-item"><a href="deferred.html" class="nav-link">Deferred and Superseded NEPs</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">NEP 21 — Simplified and explicit advanced indexing</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="nep-21-simplified-and-explicit-advanced-indexing">
<span id="nep21"></span><h1>NEP 21 — Simplified and explicit advanced indexing<a class="headerlink" href="#nep-21-simplified-and-explicit-advanced-indexing" title="Link to this heading">#</a></h1>
<dl class="field-list simple">
<dt class="field-odd">Author<span class="colon">:</span></dt>
<dd class="field-odd"><p>Sebastian Berg</p>
</dd>
<dt class="field-even">Author<span class="colon">:</span></dt>
<dd class="field-even"><p>Stephan Hoyer <<a class="reference external" href="mailto:shoyer%40google.com">shoyer<span>@</span>google<span>.</span>com</a>></p>
</dd>
<dt class="field-odd">Status<span class="colon">:</span></dt>
<dd class="field-odd"><p>Deferred</p>
</dd>
<dt class="field-even">Type<span class="colon">:</span></dt>
<dd class="field-even"><p>Standards Track</p>
</dd>
<dt class="field-odd">Created<span class="colon">:</span></dt>
<dd class="field-odd"><p>2015-08-27</p>
</dd>
</dl>
<section id="abstract">
<h2>Abstract<a class="headerlink" href="#abstract" title="Link to this heading">#</a></h2>
<p>NumPy’s “advanced” indexing support for indexing array with other arrays is
one of its most powerful and popular features. Unfortunately, the existing
rules for advanced indexing with multiple array indices are typically confusing
to both new, and in many cases even old, users of NumPy. Here we propose an
overhaul and simplification of advanced indexing, including two new “indexer”
attributes <code class="docutils literal notranslate"><span class="pre">oindex</span></code> and <code class="docutils literal notranslate"><span class="pre">vindex</span></code> to facilitate explicit indexing.</p>
</section>
<section id="background">
<h2>Background<a class="headerlink" href="#background" title="Link to this heading">#</a></h2>
<section id="existing-indexing-operations">
<h3>Existing indexing operations<a class="headerlink" href="#existing-indexing-operations" title="Link to this heading">#</a></h3>
<p>NumPy arrays currently support a flexible range of indexing operations:</p>
<ul class="simple">
<li><p>“Basic” indexing involving only slices, integers, <code class="docutils literal notranslate"><span class="pre">np.newaxis</span></code> and ellipsis
(<code class="docutils literal notranslate"><span class="pre">...</span></code>), e.g., <code class="docutils literal notranslate"><span class="pre">x[0,</span> <span class="pre">:3,</span> <span class="pre">np.newaxis]</span></code> for selecting the first element
from the 0th axis, the first three elements from the 1st axis and inserting a
new axis of size 1 at the end. Basic indexing always return a view of the
indexed array’s data.</p></li>
<li><p>“Advanced” indexing, also called “fancy” indexing, includes all cases where
arrays are indexed by other arrays. Advanced indexing always makes a copy:</p>
<ul>
<li><p>“Boolean” indexing by boolean arrays, e.g., <code class="docutils literal notranslate"><span class="pre">x[x</span> <span class="pre">></span> <span class="pre">0]</span></code> for
selecting positive elements.</p></li>
<li><p>“Vectorized” indexing by one or more integer arrays, e.g., <code class="docutils literal notranslate"><span class="pre">x[[0,</span> <span class="pre">1]]</span></code>
for selecting the first two elements along the first axis. With multiple
arrays, vectorized indexing uses broadcasting rules to combine indices along
multiple dimensions. This allows for producing a result of arbitrary shape
with arbitrary elements from the original arrays.</p></li>
<li><p>“Mixed” indexing involving any combinations of the other advancing types.
This is no more powerful than vectorized indexing, but is sometimes more
convenient.</p></li>
</ul>
</li>
</ul>
<p>For clarity, we will refer to these existing rules as “legacy indexing”.
This is only a high-level summary; for more details, see NumPy’s documentation
and <cite>Examples</cite> below.</p>
</section>
<section id="outer-indexing">
<h3>Outer indexing<a class="headerlink" href="#outer-indexing" title="Link to this heading">#</a></h3>
<p>One broadly useful class of indexing operations is not supported:</p>
<ul class="simple">
<li><p>“Outer” or orthogonal indexing treats one-dimensional arrays equivalently to
slices for determining output shapes. The rule for outer indexing is that the
result should be equivalent to independently indexing along each dimension
with integer or boolean arrays as if both the indexed and indexing arrays
were one-dimensional. This form of indexing is familiar to many users of other
programming languages such as MATLAB, Fortran and R.</p></li>
</ul>
<p>The reason why NumPy omits support for outer indexing is that the rules for
outer and vectorized conflict. Consider indexing a 2D array by two 1D integer
arrays, e.g., <code class="docutils literal notranslate"><span class="pre">x[[0,</span> <span class="pre">1],</span> <span class="pre">[0,</span> <span class="pre">1]]</span></code>:</p>
<ul class="simple">
<li><p>Outer indexing is equivalent to combining multiple integer indices with
<code class="docutils literal notranslate"><span class="pre">itertools.product()</span></code>. The result in this case is another 2D array with
all combinations of indexed elements, e.g.,
<code class="docutils literal notranslate"><span class="pre">np.array([[x[0,</span> <span class="pre">0],</span> <span class="pre">x[0,</span> <span class="pre">1]],</span> <span class="pre">[x[1,</span> <span class="pre">0],</span> <span class="pre">x[1,</span> <span class="pre">1]]])</span></code></p></li>
<li><p>Vectorized indexing is equivalent to combining multiple integer indices with
<code class="docutils literal notranslate"><span class="pre">zip()</span></code>. The result in this case is a 1D array containing the diagonal
elements, e.g., <code class="docutils literal notranslate"><span class="pre">np.array([x[0,</span> <span class="pre">0],</span> <span class="pre">x[1,</span> <span class="pre">1]])</span></code>.</p></li>
</ul>
<p>This difference is a frequent stumbling block for new NumPy users. The outer
indexing model is easier to understand, and is a natural generalization of
slicing rules. But NumPy instead chose to support vectorized indexing, because
it is strictly more powerful.</p>
<p>It is always possible to emulate outer indexing by vectorized indexing with
the right indices. To make this easier, NumPy includes utility objects and
functions such as <code class="docutils literal notranslate"><span class="pre">np.ogrid</span></code> and <code class="docutils literal notranslate"><span class="pre">np.ix_</span></code>, e.g.,
<code class="docutils literal notranslate"><span class="pre">x[np.ix_([0,</span> <span class="pre">1],</span> <span class="pre">[0,</span> <span class="pre">1])]</span></code>. However, there are no utilities for emulating
fully general/mixed outer indexing, which could unambiguously allow for slices,
integers, and 1D boolean and integer arrays.</p>
</section>
<section id="mixed-indexing">
<h3>Mixed indexing<a class="headerlink" href="#mixed-indexing" title="Link to this heading">#</a></h3>
<p>NumPy’s existing rules for combining multiple types of indexing in the same
operation are quite complex, involving a number of edge cases.</p>
<p>One reason why mixed indexing is particularly confusing is that at first glance
the result works deceptively like outer indexing. Returning to our example of a
2D array, both <code class="docutils literal notranslate"><span class="pre">x[:2,</span> <span class="pre">[0,</span> <span class="pre">1]]</span></code> and <code class="docutils literal notranslate"><span class="pre">x[[0,</span> <span class="pre">1],</span> <span class="pre">:2]</span></code> return 2D arrays with
axes in the same order as the original array.</p>
<p>However, as soon as two or more non-slice objects (including integers) are
introduced, vectorized indexing rules apply. The axes introduced by the array
indices are at the front, unless all array indices are consecutive, in which
case NumPy deduces where the user “expects” them to be. Consider indexing a 3D
array <code class="docutils literal notranslate"><span class="pre">arr</span></code> with shape <code class="docutils literal notranslate"><span class="pre">(X,</span> <span class="pre">Y,</span> <span class="pre">Z)</span></code>:</p>
<ol class="arabic simple">
<li><p><code class="docutils literal notranslate"><span class="pre">arr[:,</span> <span class="pre">[0,</span> <span class="pre">1],</span> <span class="pre">0]</span></code> has shape <code class="docutils literal notranslate"><span class="pre">(X,</span> <span class="pre">2)</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">arr[[0,</span> <span class="pre">1],</span> <span class="pre">0,</span> <span class="pre">:]</span></code> has shape <code class="docutils literal notranslate"><span class="pre">(2,</span> <span class="pre">Z)</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">arr[0,</span> <span class="pre">:,</span> <span class="pre">[0,</span> <span class="pre">1]]</span></code> has shape <code class="docutils literal notranslate"><span class="pre">(2,</span> <span class="pre">Y)</span></code>, not <code class="docutils literal notranslate"><span class="pre">(Y,</span> <span class="pre">2)</span></code>!</p></li>
</ol>
<p>These first two cases are intuitive and consistent with outer indexing, but
this last case is quite surprising, even to many highly experienced NumPy users.</p>
<p>Mixed cases involving multiple array indices are also surprising, and only
less problematic because the current behavior is so useless that it is rarely
encountered in practice. When a boolean array index is mixed with another boolean or
integer array, boolean array is converted to integer array indices (equivalent
to <code class="docutils literal notranslate"><span class="pre">np.nonzero()</span></code>) and then broadcast. For example, indexing a 2D array of
size <code class="docutils literal notranslate"><span class="pre">(2,</span> <span class="pre">2)</span></code> like <code class="docutils literal notranslate"><span class="pre">x[[True,</span> <span class="pre">False],</span> <span class="pre">[True,</span> <span class="pre">False]]</span></code> produces a 1D vector
with shape <code class="docutils literal notranslate"><span class="pre">(1,)</span></code>, not a 2D sub-matrix with shape <code class="docutils literal notranslate"><span class="pre">(1,</span> <span class="pre">1)</span></code>.</p>
<p>Mixed indexing seems so tricky that it is tempting to say that it never should
be used. However, it is not easy to avoid, because NumPy implicitly adds full
slices if there are fewer indices than the full dimensionality of the indexed
array. This means that indexing a 2D array like <cite>x[[0, 1]]`</cite> is equivalent to
<code class="docutils literal notranslate"><span class="pre">x[[0,</span> <span class="pre">1],</span> <span class="pre">:]</span></code>. These cases are not surprising, but they constrain the
behavior of mixed indexing.</p>
</section>
<section id="indexing-in-other-python-array-libraries">
<h3>Indexing in other Python array libraries<a class="headerlink" href="#indexing-in-other-python-array-libraries" title="Link to this heading">#</a></h3>
<p>Indexing is a useful and widely recognized mechanism for accessing
multi-dimensional array data, so it is no surprise that many other libraries in
the scientific Python ecosystem also support array indexing.</p>
<p>Unfortunately, the full complexity of NumPy’s indexing rules mean that it is
both challenging and undesirable for other libraries to copy its behavior in all
of its nuance. The only full implementation of NumPy-style indexing is NumPy
itself. This includes projects like dask.array and h5py, which support <em>most</em>
types of array indexing in some form, and otherwise attempt to copy NumPy’s API
exactly.</p>
<p>Vectorized indexing in particular can be challenging to implement with array
storage backends not based on NumPy. In contrast, indexing by 1D arrays along
at least one dimension in the style of outer indexing is much more achievable.
This has led many libraries (including dask and h5py) to attempt to define a
safe subset of NumPy-style indexing that is equivalent to outer indexing, e.g.,
by only allowing indexing with an array along at most one dimension. However,
this is quite challenging to do correctly in a general enough way to be useful.
For example, the current versions of dask and h5py both handle mixed indexing
in case 3 above inconsistently with NumPy. This is quite likely to lead to
bugs.</p>
<p>These inconsistencies, in addition to the broader challenge of implementing
every type of indexing logic, make it challenging to write high-level array
libraries like xarray or dask.array that can interchangeably index many types of
array storage. In contrast, explicit APIs for outer and vectorized indexing in
NumPy would provide a model that external libraries could reliably emulate, even
if they don’t support every type of indexing.</p>
</section>
</section>
<section id="high-level-changes">
<h2>High level changes<a class="headerlink" href="#high-level-changes" title="Link to this heading">#</a></h2>
<p>Inspired by multiple “indexer” attributes for controlling different types
of indexing behavior in pandas, we propose to:</p>
<ol class="arabic simple">
<li><p>Introduce <code class="docutils literal notranslate"><span class="pre">arr.oindex[indices]</span></code> which allows array indices, but
uses outer indexing logic.</p></li>
<li><p>Introduce <code class="docutils literal notranslate"><span class="pre">arr.vindex[indices]</span></code> which use the current
“vectorized”/broadcasted logic but with two differences from
legacy indexing:</p>
<ul class="simple">
<li><p>Boolean indices are not supported. All indices must be integers,
integer arrays or slices.</p></li>
<li><p>The integer index result dimensions are always the first axes
of the result array. No transpose is done, even for a single
integer array index.</p></li>
</ul>
</li>
<li><p>Plain indexing on arrays will start to give warnings and eventually
errors in cases where one of the explicit indexers should be preferred:</p>
<ul class="simple">
<li><p>First, in all cases where legacy and outer indexing would give
different results.</p></li>
<li><p>Later, potentially in all cases involving an integer array.</p></li>
</ul>
</li>
</ol>
<p>These constraints are sufficient for making indexing generally consistent
with expectations and providing a less surprising learning curve with
<code class="docutils literal notranslate"><span class="pre">oindex</span></code>.</p>
<p>Note that all things mentioned here apply both for assignment as well as
subscription.</p>
<p>Understanding these details is <em>not</em> easy. The <cite>Examples</cite> section in the
discussion gives code examples.
And the hopefully easier <cite>Motivational Example</cite> provides some
motivational use-cases for the general ideas and is likely a good start for
anyone not intimately familiar with advanced indexing.</p>
</section>
<section id="detailed-description">
<h2>Detailed description<a class="headerlink" href="#detailed-description" title="Link to this heading">#</a></h2>
<section id="proposed-rules">
<h3>Proposed rules<a class="headerlink" href="#proposed-rules" title="Link to this heading">#</a></h3>
<p>From the three problems noted above some expectations for NumPy can
be deduced:</p>
<ol class="arabic simple">
<li><p>There should be a prominent outer/orthogonal indexing method such as
<code class="docutils literal notranslate"><span class="pre">arr.oindex[indices]</span></code>.</p></li>
<li><p>Considering how confusing vectorized/fancy indexing can be, it should
be possible to be made more explicitly (e.g. <code class="docutils literal notranslate"><span class="pre">arr.vindex[indices]</span></code>).</p></li>
<li><p>A new <code class="docutils literal notranslate"><span class="pre">arr.vindex[indices]</span></code> method, would not be tied to the
confusing transpose rules of fancy indexing, which is for example
needed for the simple case of a single advanced index. Thus,
no transposing should be done. The axes created by the integer array
indices are always inserted at the front, even for a single index.</p></li>
<li><p>Boolean indexing is conceptionally outer indexing. Broadcasting
together with other advanced indices in the manner of legacy
indexing is generally not helpful or well defined.
A user who wishes the “<code class="docutils literal notranslate"><span class="pre">nonzero</span></code>” plus broadcast behaviour can thus
be expected to do this manually. Thus, <code class="docutils literal notranslate"><span class="pre">vindex</span></code> does not need to
support boolean index arrays.</p></li>
<li><p>An <code class="docutils literal notranslate"><span class="pre">arr.legacy_index</span></code> attribute should be implemented to support
legacy indexing. This gives a simple way to update existing codebases
using legacy indexing, which will make the deprecation of plain indexing
behavior easier. The longer name <code class="docutils literal notranslate"><span class="pre">legacy_index</span></code> is intentionally chosen
to be explicit and discourage its use in new code.</p></li>
<li><p>Plain indexing <code class="docutils literal notranslate"><span class="pre">arr[...]</span></code> should return an error for ambiguous cases.
For the beginning, this probably means cases where <code class="docutils literal notranslate"><span class="pre">arr[ind]</span></code> and
<code class="docutils literal notranslate"><span class="pre">arr.oindex[ind]</span></code> return different results give deprecation warnings.
This includes every use of vectorized indexing with multiple integer arrays.
Due to the transposing behaviour, this means that``arr[0, :, index_arr]``
will be deprecated, but <code class="docutils literal notranslate"><span class="pre">arr[:,</span> <span class="pre">0,</span> <span class="pre">index_arr]</span></code> will not for the time being.</p></li>
<li><p>To ensure that existing subclasses of <cite>ndarray</cite> that override indexing
do not inadvertently revert to default behavior for indexing attributes,
these attribute should have explicit checks that disable them if
<code class="docutils literal notranslate"><span class="pre">__getitem__</span></code> or <code class="docutils literal notranslate"><span class="pre">__setitem__</span></code> has been overridden.</p></li>
</ol>
<p>Unlike plain indexing, the new indexing attributes are explicitly aimed
at higher dimensional indexing, several additional changes should be implemented:</p>
<ul class="simple">
<li><p>The indexing attributes will enforce exact dimension and indexing match.
This means that no implicit ellipsis (<code class="docutils literal notranslate"><span class="pre">...</span></code>) will be added. Unless
an ellipsis is present the indexing expression will thus only work for
an array with a specific number of dimensions.
This makes the expression more explicit and safeguards against wrong
dimensionality of arrays.
There should be no implications for “duck typing” compatibility with
builtin Python sequences, because Python sequences only support a limited
form of “basic indexing” with integers and slices.</p></li>
<li><p>The current plain indexing allows for the use of non-tuples for
multi-dimensional indexing such as <code class="docutils literal notranslate"><span class="pre">arr[[slice(None),</span> <span class="pre">2]]</span></code>.
This creates some inconsistencies and thus the indexing attributes
should only allow plain python tuples for this purpose.
(Whether or not this should be the case for plain indexing is a
different issue.)</p></li>
<li><p>The new attributes should not use getitem to implement setitem,
since it is a cludge and not useful for vectorized
indexing. (not implemented yet)</p></li>
</ul>
</section>
<section id="open-questions">
<h3>Open Questions<a class="headerlink" href="#open-questions" title="Link to this heading">#</a></h3>
<ul class="simple">
<li><p>The names <code class="docutils literal notranslate"><span class="pre">oindex</span></code>, <code class="docutils literal notranslate"><span class="pre">vindex</span></code> and <code class="docutils literal notranslate"><span class="pre">legacy_index</span></code> are just suggestions at
the time of writing this, another name NumPy has used for something like
<code class="docutils literal notranslate"><span class="pre">oindex</span></code> is <code class="docutils literal notranslate"><span class="pre">np.ix_</span></code>. See also below.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">oindex</span></code> and <code class="docutils literal notranslate"><span class="pre">vindex</span></code> could always return copies, even when no array
operation occurs. One argument for allowing a view return is that this way
<code class="docutils literal notranslate"><span class="pre">oindex</span></code> can be used as a general index replacement.
However, there is one argument for returning copies. It is possible for
<code class="docutils literal notranslate"><span class="pre">arr.vindex[array_scalar,</span> <span class="pre">...]</span></code>, where <code class="docutils literal notranslate"><span class="pre">array_scalar</span></code> should be
a 0-D array but is not, since 0-D arrays tend to be converted.
Copying always “fixes” this possible inconsistency.</p></li>
<li><p>The final state to morph plain indexing in is not fixed in this PEP.
It is for example possible that <cite>arr[index]`</cite> will be equivalent to
<code class="docutils literal notranslate"><span class="pre">arr.oindex</span></code> at some point in the future.
Since such a change will take years, it seems unnecessary to make
specific decisions at this time.</p></li>
<li><p>The proposed changes to plain indexing could be postponed indefinitely or
not taken in order to not break or force major fixes to existing code bases.</p></li>
</ul>
</section>
<section id="alternative-names">
<h3>Alternative Names<a class="headerlink" href="#alternative-names" title="Link to this heading">#</a></h3>
<p>Possible names suggested (more suggestions will be added).</p>
<div class="pst-scrollable-table-container"><table class="table">
<tbody>
<tr class="row-odd"><td><p><strong>Orthogonal</strong></p></td>
<td><p>oindex</p></td>
<td><p>oix</p></td>
</tr>
<tr class="row-even"><td><p><strong>Vectorized</strong></p></td>
<td><p>vindex</p></td>
<td><p>vix</p></td>
</tr>
<tr class="row-odd"><td><p><strong>Legacy</strong></p></td>
<td><p>legacy_index</p></td>
<td><p>l/findex</p></td>
</tr>
</tbody>
</table>
</div>
</section>
<section id="subclasses">
<h3>Subclasses<a class="headerlink" href="#subclasses" title="Link to this heading">#</a></h3>
<p>Subclasses are a bit problematic in the light of these changes. There are
some possible solutions for this. For most subclasses (those which do not
provide <code class="docutils literal notranslate"><span class="pre">__getitem__</span></code> or <code class="docutils literal notranslate"><span class="pre">__setitem__</span></code>) the special attributes should
just work. Subclasses that <em>do</em> provide it must be updated accordingly
and should preferably not subclass <code class="docutils literal notranslate"><span class="pre">oindex</span></code> and <code class="docutils literal notranslate"><span class="pre">vindex</span></code>.</p>
<p>All subclasses will inherit the attributes, however, the implementation
of <code class="docutils literal notranslate"><span class="pre">__getitem__</span></code> on these attributes should test
<code class="docutils literal notranslate"><span class="pre">subclass.__getitem__</span> <span class="pre">is</span> <span class="pre">ndarray.__getitem__</span></code>. If not, the
subclass has special handling for indexing and <code class="docutils literal notranslate"><span class="pre">NotImplementedError</span></code>
should be raised, requiring that the indexing attributes is also explicitly
overwritten. Likewise, implementations of <code class="docutils literal notranslate"><span class="pre">__setitem__</span></code> should check to see
if <code class="docutils literal notranslate"><span class="pre">__setitem__</span></code> is overridden.</p>
<p>A further question is how to facilitate implementing the special attributes.
Also there is the weird functionality where <code class="docutils literal notranslate"><span class="pre">__setitem__</span></code> calls
<code class="docutils literal notranslate"><span class="pre">__getitem__</span></code> for non-advanced indices. It might be good to avoid it for
the new attributes, but on the other hand, that may make it even more
confusing.</p>
<p>To facilitate implementations we could provide functions similar to
<code class="docutils literal notranslate"><span class="pre">operator.itemgetter</span></code> and <code class="docutils literal notranslate"><span class="pre">operator.setitem</span></code> for the attributes.
Possibly a mixin could be provided to help implementation. These improvements
are not essential to the initial implementation, so they are saved for
future work.</p>
</section>
</section>
<section id="implementation">
<h2>Implementation<a class="headerlink" href="#implementation" title="Link to this heading">#</a></h2>
<p>Implementation would start with writing special indexing objects available
through <code class="docutils literal notranslate"><span class="pre">arr.oindex</span></code>, <code class="docutils literal notranslate"><span class="pre">arr.vindex</span></code>, and <code class="docutils literal notranslate"><span class="pre">arr.legacy_index</span></code> to allow these
indexing operations. Also, we would need to start to deprecate those plain index
operations which are not ambiguous.
Furthermore, the NumPy code base will need to use the new attributes and
tests will have to be adapted.</p>
</section>
<section id="backward-compatibility">
<h2>Backward compatibility<a class="headerlink" href="#backward-compatibility" title="Link to this heading">#</a></h2>
<p>As a new feature, no backward compatibility issues with the new <code class="docutils literal notranslate"><span class="pre">vindex</span></code>
and <code class="docutils literal notranslate"><span class="pre">oindex</span></code> attributes would arise.</p>
<p>To facilitate backwards compatibility as much as possible, we expect a long
deprecation cycle for legacy indexing behavior and propose the new
<code class="docutils literal notranslate"><span class="pre">legacy_index</span></code> attribute.</p>
<p>Some forward compatibility issues with subclasses that do not specifically
implement the new methods may arise.</p>
</section>
<section id="alternatives">
<h2>Alternatives<a class="headerlink" href="#alternatives" title="Link to this heading">#</a></h2>
<p>NumPy may not choose to offer these different type of indexing methods, or
choose to only offer them through specific functions instead of the proposed
notation above.</p>
<p>We don’t think that new functions are a good alternative, because indexing
notation <code class="docutils literal notranslate"><span class="pre">[]</span></code> offer some syntactic advantages in Python (i.e., direct
creation of slice objects) compared to functions.</p>
<p>A more reasonable alternative would be write new wrapper objects for alternative
indexing with functions rather than methods (e.g., <code class="docutils literal notranslate"><span class="pre">np.oindex(arr)[indices]</span></code>
instead of <code class="docutils literal notranslate"><span class="pre">arr.oindex[indices]</span></code>). Functionally, this would be equivalent,
but indexing is such a common operation that we think it is important to
minimize syntax and worth implementing it directly on <cite>ndarray</cite> objects
themselves. Indexing attributes also define a clear interface that is easier
for alternative array implementations to copy, notwithstanding ongoing
efforts to make it easier to override NumPy functions <a class="footnote-reference brackets" href="#id5" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a>.</p>
</section>
<section id="discussion">
<h2>Discussion<a class="headerlink" href="#discussion" title="Link to this heading">#</a></h2>
<p>The original discussion about vectorized vs outer/orthogonal indexing arose
on the NumPy mailing list:</p>
<blockquote>
<div><ul class="simple">
<li><p><a class="reference external" href="https://mail.python.org/pipermail/numpy-discussion/2015-April/072550.html">https://mail.python.org/pipermail/numpy-discussion/2015-April/072550.html</a></p></li>
</ul>
</div></blockquote>
<p>Some discussion can be found on the original pull request for this NEP:</p>
<blockquote>
<div><ul class="simple">
<li><p><a class="github reference external" href="https://github.com/numpy/numpy/pull/6256">numpy/numpy#6256</a></p></li>
</ul>
</div></blockquote>
<p>Python implementations of the indexing operations can be found at:</p>
<blockquote>
<div><ul class="simple">
<li><p><a class="github reference external" href="https://github.com/numpy/numpy/pull/5749">numpy/numpy#5749</a></p></li>
<li><p><a class="reference external" href="https://gist.github.com/shoyer/c700193625347eb68fee4d1f0dc8c0c8">https://gist.github.com/shoyer/c700193625347eb68fee4d1f0dc8c0c8</a></p></li>
</ul>
</div></blockquote>
<section id="examples">
<h3>Examples<a class="headerlink" href="#examples" title="Link to this heading">#</a></h3>
<p>Since the various kinds of indexing is hard to grasp in many cases, these
examples hopefully give some more insights. Note that they are all in terms
of shape.
In the examples, all original dimensions have 5 or more elements,
advanced indexing inserts smaller dimensions.
These examples may be hard to grasp without working knowledge of advanced
indexing as of NumPy 1.9.</p>
<p>Example array:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">))</span>
</pre></div>
</div>
</section>
</section>
<section id="legacy-fancy-indexing">
<h2>Legacy fancy indexing<a class="headerlink" href="#legacy-fancy-indexing" title="Link to this heading">#</a></h2>
<p>Note that the same result can be achieved with <code class="docutils literal notranslate"><span class="pre">arr.legacy_index</span></code>, but the
“future error” will still work in this case.</p>
<p>Single index is transposed (this is the same for all indexing types):</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span><span class="p">[[</span><span class="mi">0</span><span class="p">],</span> <span class="o">...</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(1, 6, 7, 8)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="o">...</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(5, 1, 7, 8)</span>
</pre></div>
</div>
<p>Multiple indices are transposed <em>if</em> consecutive:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">:]</span><span class="o">.</span><span class="n">shape</span> <span class="c1"># future error</span>
<span class="go">(5, 1, 8)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">]]</span><span class="o">.</span><span class="n">shape</span> <span class="c1"># future error</span>
<span class="go">(1, 5, 7)</span>
</pre></div>
</div>
<p>It is important to note that a scalar <em>is</em> integer array index in this sense
(and gets broadcasted with the other advanced index):</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(5, 1, 8)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">:,</span> <span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span> <span class="c1"># future error (scalar is "fancy")</span>
<span class="go">(1, 5, 7)</span>
</pre></div>
</div>
<p>Single boolean index can act on multiple dimensions (especially the whole
array). It has to match (as of 1.10. a deprecation warning) the dimensions.
The boolean index is otherwise identical to (multiple consecutive) integer
array indices:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="c1"># Create boolean index with one True value for the last two dimensions:</span>
<span class="gp">>>> </span><span class="n">bindx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">bool_</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">bindx</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(5, 1)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(1, 6)</span>
</pre></div>
</div>
<p>The combination with anything that is not a scalar is confusing, e.g.:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span><span class="p">[[</span><span class="mi">0</span><span class="p">],</span> <span class="p">:,</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span> <span class="c1"># bindx result broadcasts with [0]</span>
<span class="go">(1, 6)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span> <span class="c1"># IndexError</span>
</pre></div>
</div>
</section>
<section id="id2">
<h2>Outer indexing<a class="headerlink" href="#id2" title="Link to this heading">#</a></h2>
<p>Multiple indices are “orthogonal” and their result axes are inserted
at the same place (they are not broadcasted):</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">oindex</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">:]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(5, 1, 2, 8)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">oindex</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(5, 1, 7, 2)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">oindex</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(5, 1, 8)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">oindex</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">:,</span> <span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(5, 1, 7)</span>
</pre></div>
</div>
<p>Boolean indices results are always inserted where the index is:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="c1"># Create boolean index with one True value for the last two dimensions:</span>
<span class="gp">>>> </span><span class="n">bindx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">bool_</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">bindx</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">oindex</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(5, 1)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">oindex</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(6, 1)</span>
</pre></div>
</div>
<p>Nothing changed in the presence of other advanced indices since:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">oindex</span><span class="p">[[</span><span class="mi">0</span><span class="p">],</span> <span class="p">:,</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(1, 6, 1)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">oindex</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(5, 2, 1)</span>
</pre></div>
</div>
</section>
<section id="vectorized-inner-indexing">
<h2>Vectorized/inner indexing<a class="headerlink" href="#vectorized-inner-indexing" title="Link to this heading">#</a></h2>
<p>Multiple indices are broadcasted and iterated as one like fancy indexing,
but the new axes are always inserted at the front:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">vindex</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">:]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(2, 5, 8)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">vindex</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(2, 5, 7)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">vindex</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(1, 5, 8)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">vindex</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">:,</span> <span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(1, 5, 7)</span>
</pre></div>
</div>
<p>Boolean indices results are always inserted where the index is, exactly
as in <code class="docutils literal notranslate"><span class="pre">oindex</span></code> given how specific they are to the axes they operate on:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="c1"># Create boolean index with one True value for the last two dimensions:</span>
<span class="gp">>>> </span><span class="n">bindx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">bool_</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">bindx</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">vindex</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(5, 1)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">vindex</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(6, 1)</span>
</pre></div>
</div>
<p>But other advanced indices are again transposed to the front:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">vindex</span><span class="p">[[</span><span class="mi">0</span><span class="p">],</span> <span class="p">:,</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(1, 6, 1)</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="o">.</span><span class="n">vindex</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">bindx</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(2, 5, 1)</span>
</pre></div>
</div>
<section id="motivational-example">
<h3>Motivational Example<a class="headerlink" href="#motivational-example" title="Link to this heading">#</a></h3>
<p>Imagine having a data acquisition software storing <code class="docutils literal notranslate"><span class="pre">D</span></code> channels and
<code class="docutils literal notranslate"><span class="pre">N</span></code> datapoints along the time. She stores this into an <code class="docutils literal notranslate"><span class="pre">(N,</span> <span class="pre">D)</span></code> shaped
array. During data analysis, we needs to fetch a pool of channels, for example
to calculate a mean over them.</p>
<p>This data can be faked using:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">100</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
</pre></div>
</div>
<p>Now one may remember indexing with an integer array and find the correct code:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">group</span> <span class="o">=</span> <span class="n">arr</span><span class="p">[:,</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">5</span><span class="p">]]</span>
<span class="gp">>>> </span><span class="n">mean_value</span> <span class="o">=</span> <span class="n">arr</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
</pre></div>
</div>
<p>However, assume that there were some specific time points (first dimension
of the data) that need to be specially considered. These time points are
already known and given by:</p>