-
Notifications
You must be signed in to change notification settings - Fork 6
/
nep-0027-zero-rank-arrarys.html
811 lines (620 loc) · 44.9 KB
/
nep-0027-zero-rank-arrarys.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
<!DOCTYPE html>
<html lang="en" data-content_root="./" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>NEP 27 — Zero rank arrays — NumPy Enhancement Proposals</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=26a4bc78f4c0ddb94549" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=26a4bc78f4c0ddb94549" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=26a4bc78f4c0ddb94549"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=26a4bc78f4c0ddb94549" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=26a4bc78f4c0ddb94549" />
<script src="_static/documentation_options.js?v=7f41d439"></script>
<script src="_static/doctools.js?v=888ff710"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'nep-0027-zero-rank-arrarys';</script>
<link rel="icon" href="_static/favicon.ico"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="NEP 28 — numpy.org website redesign" href="nep-0028-website-redesign.html" />
<link rel="prev" title="NEP 22 — Duck typing for NumPy arrays – high level overview" href="nep-0022-ndarray-duck-typing-overview.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="" />
<meta name="docbuild:last-update" content="Nov 26, 2024"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="content.html">
<img src="_static/numpylogo.svg" class="logo__image only-light" alt="NumPy Enhancement Proposals - Home"/>
<img src="_static/numpylogo.svg" class="logo__image only-dark pst-js-only" alt="NumPy Enhancement Proposals - Home"/>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wish list
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wish list
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="scope.html">The Scope of NumPy</a></li>
<li class="toctree-l1"><a class="reference internal" href="roadmap.html">Current roadmap</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">Wish list</a></li>
</ul>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="meta.html">Meta-NEPs (NEPs about NEPs or active Processes)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0000.html">NEP 0 — Purpose and process</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0023-backwards-compatibility.html">NEP 23 — Backwards compatibility and deprecation policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0036-fair-play.html">NEP 36 — Fair play</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0045-c_style_guide.html">NEP 45 — C style guide</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0046-sponsorship-guidelines.html">NEP 46 — NumPy sponsorship guidelines</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0048-spending-project-funds.html">NEP 48 — Spending NumPy project funds</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-template.html">NEP X — Template and instructions</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="provisional.html">Provisional NEPs (provisionally accepted; interface may change)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="simple">
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="accepted.html">Accepted NEPs (implementation in progress)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0041-improved-dtype-support.html">NEP 41 — First step towards a new datatype system</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0042-new-dtypes.html">NEP 42 — New and extensible DTypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0044-restructuring-numpy-docs.html">NEP 44 — Restructuring the NumPy documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0051-scalar-representation.html">NEP 51 — Changing the representation of NumPy scalars</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="open.html">Open NEPs (under consideration)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0043-extensible-ufuncs.html">NEP 43 — Enhancing the extensibility of UFuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0053-c-abi-evolution.html">NEP 53 — Evolving the NumPy C-API for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0054-simd-cpp-highway.html">NEP 54 — SIMD infrastructure evolution: adopting Google Highway when moving to C++?</a></li>
</ul>
</details></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="finished.html">Finished NEPs</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="nep-0001-npy-format.html">NEP 1 — A simple file format for NumPy arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0005-generalized-ufuncs.html">NEP 5 — Generalized universal functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0007-datetime-proposal.html">NEP 7 — A proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0010-new-iterator-ufunc.html">NEP 10 — Optimizing iterator/UFunc performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0013-ufunc-overrides.html">NEP 13 — A mechanism for overriding Ufuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0014-dropping-python2.7-proposal.html">NEP 14 — Plan for dropping Python 2.7 support</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0015-merge-multiarray-umath.html">NEP 15 — Merging multiarray and umath</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0018-array-function-protocol.html">NEP 18 — A dispatch mechanism for NumPy's high level array functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0019-rng-policy.html">NEP 19 — Random number generator policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0020-gufunc-signature-enhancement.html">NEP 20 — Expansion of generalized universal function signatures</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0022-ndarray-duck-typing-overview.html">NEP 22 — Duck typing for NumPy arrays – high level overview</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">NEP 27 — Zero rank arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0028-website-redesign.html">NEP 28 — numpy.org website redesign</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0029-deprecation_policy.html">NEP 29 — Recommend Python and NumPy version support as a community policy standard</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0032-remove-financial-functions.html">NEP 32 — Remove the financial functions from NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0034-infer-dtype-is-object.html">NEP 34 — Disallow inferring ``dtype=object`` from sequences</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0035-array-creation-dispatch-with-array-function.html">NEP 35 — Array creation dispatching with __array_function__</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0038-SIMD-optimizations.html">NEP 38 — Using SIMD optimization instructions for performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0040-legacy-datatype-impl.html">NEP 40 — Legacy datatype implementation in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0049.html">NEP 49 — Data allocation strategies</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0050-scalar-promotion.html">NEP 50 — Promotion rules for Python scalars</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0052-python-api-cleanup.html">NEP 52 — Python API cleanup for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0055-string_dtype.html">NEP 55 — Add a UTF-8 variable-width string DType to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0056-array-api-main-namespace.html">NEP 56 — Array API standard support in NumPy's main namespace</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="deferred.html">Deferred and Superseded NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0002-warnfix.html">NEP 2 — A proposal to build numpy without warning with a big set of warning flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0003-math_config_clean.html">NEP 3 — Cleaning the math configuration of numpy.core</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0004-datetime-proposal3.html">NEP 4 — A (third) proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0006-newbugtracker.html">NEP 6 — Replacing Trac with a different bug tracker</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0008-groupby_additions.html">NEP 8 — A proposal for adding groupby functionality to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0009-structured_array_extensions.html">NEP 9 — Structured array extensions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0011-deferred-ufunc-evaluation.html">NEP 11 — Deferred UFunc evaluation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0012-missing-data.html">NEP 12 — Missing data functionality in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0021-advanced-indexing.html">NEP 21 — Simplified and explicit advanced indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0024-missing-data-2.html">NEP 24 — Missing data functionality - alternative 1 to NEP 12</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0025-missing-data-3.html">NEP 25 — NA support via special dtypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0026-missing-data-summary.html">NEP 26 — Summary of missing data NEPs and discussion</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0030-duck-array-protocol.html">NEP 30 — Duck typing for NumPy arrays - implementation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0031-uarray.html">NEP 31 — Context-local and global overrides of the NumPy API</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0037-array-module.html">NEP 37 — A dispatch protocol for NumPy-like modules</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0047-array-api-standard.html">NEP 47 — Adopting the array API standard</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="rejected.html">Rejected and Withdrawn NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0016-abstract-array.html">NEP 16 — An abstract base class for identifying "duck arrays"</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0017-split-out-maskedarray.html">NEP 17 — Split out masked arrays</a></li>
</ul>
</details></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="content.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">Roadmap & NumPy enhancement proposals</a></li>
<li class="breadcrumb-item"><a href="finished.html" class="nav-link">Finished NEPs</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">NEP 27 — Zero rank arrays</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="nep-27-zero-rank-arrays">
<span id="nep27"></span><h1>NEP 27 — Zero rank arrays<a class="headerlink" href="#nep-27-zero-rank-arrays" title="Link to this heading">#</a></h1>
<dl class="field-list simple">
<dt class="field-odd">Author<span class="colon">:</span></dt>
<dd class="field-odd"><p>Alexander Belopolsky (sasha), transcribed Matt Picus <<a class="reference external" href="mailto:matti.picus%40gmail.com">matti<span>.</span>picus<span>@</span>gmail<span>.</span>com</a>></p>
</dd>
<dt class="field-even">Status<span class="colon">:</span></dt>
<dd class="field-even"><p>Final</p>
</dd>
<dt class="field-odd">Type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Informational</p>
</dd>
<dt class="field-even">Created<span class="colon">:</span></dt>
<dd class="field-even"><p>2006-06-10</p>
</dd>
<dt class="field-odd">Resolution<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference external" href="https://mail.python.org/pipermail/numpy-discussion/2018-October/078824.html">https://mail.python.org/pipermail/numpy-discussion/2018-October/078824.html</a></p>
</dd>
</dl>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>NumPy has both zero rank arrays and scalars. This design document, adapted
from a <a class="reference external" href="https://web.archive.org/web/20100503065506/http://projects.scipy.org:80/numpy/wiki/ZeroRankArray">2006 wiki entry</a>, describes what zero rank arrays are and why they
exist. It was transcribed 2018-10-13 into a NEP and links were updated.
The pull request sparked <a class="reference external" href="https://github.com/numpy/numpy/pull/12166">a lively discussion</a> about the continued need
for zero rank arrays and scalars in NumPy.</p>
<p>Some of the information here is dated, for instance indexing of 0-D arrays
now is now implemented and does not error.</p>
</div>
<section id="zero-rank-arrays">
<h2>Zero-rank arrays<a class="headerlink" href="#zero-rank-arrays" title="Link to this heading">#</a></h2>
<p>Zero-rank arrays are arrays with shape=(). For example:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">x</span> <span class="o">=</span> <span class="n">array</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">x</span><span class="o">.</span><span class="n">shape</span>
<span class="go">()</span>
</pre></div>
</div>
</section>
<section id="zero-rank-arrays-and-array-scalars">
<h2>Zero-rank arrays and array scalars<a class="headerlink" href="#zero-rank-arrays-and-array-scalars" title="Link to this heading">#</a></h2>
<p>Array scalars are similar to zero-rank arrays in many aspects:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">int_</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">shape</span>
<span class="go">()</span>
</pre></div>
</div>
<p>They even print the same:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="nb">print</span> <span class="n">int_</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">1</span>
<span class="gp">>>> </span><span class="nb">print</span> <span class="n">array</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">1</span>
</pre></div>
</div>
<p>However there are some important differences:</p>
<ul class="simple">
<li><p>Array scalars are immutable</p></li>
<li><p>Array scalars have different python type for different data types</p></li>
</ul>
</section>
<section id="motivation-for-array-scalars">
<h2>Motivation for array scalars<a class="headerlink" href="#motivation-for-array-scalars" title="Link to this heading">#</a></h2>
<p>NumPy’s design decision to provide 0-d arrays and array scalars in addition to
native python types goes against one of the fundamental python design
principles that there should be only one obvious way to do it. In this section
we will try to explain why it is necessary to have three different ways to
represent a number.</p>
<p>There were several numpy-discussion threads:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://mail.python.org/pipermail/numpy-discussion/2002-September/001600.html">rank-0 arrays</a> in a 2002 mailing list thread.</p></li>
<li><p>Thoughts about zero dimensional arrays vs Python scalars in a <a class="reference external" href="https://sourceforge.net/p/numpy/mailman/message/11299166">2005 mailing list thread</a>]</p></li>
</ul>
<p>It has been suggested several times that NumPy just use rank-0 arrays to
represent scalar quantities in all case. Pros and cons of converting rank-0
arrays to scalars were summarized as follows:</p>
<ul class="simple">
<li><p>Pros:</p>
<ul>
<li><p>Some cases when Python expects an integer (the most
dramatic is when slicing and indexing a sequence:
_PyEval_SliceIndex in ceval.c) it will not try to
convert it to an integer first before raising an error.
Therefore it is convenient to have 0-dim arrays that
are integers converted for you by the array object.</p></li>
<li><p>No risk of user confusion by having two types that
are nearly but not exactly the same and whose separate
existence can only be explained by the history of
Python and NumPy development.</p></li>
<li><p>No problems with code that does explicit typechecks
<code class="docutils literal notranslate"><span class="pre">(isinstance(x,</span> <span class="pre">float)</span></code> or <code class="docutils literal notranslate"><span class="pre">type(x)</span> <span class="pre">==</span> <span class="pre">types.FloatType)</span></code>. Although
explicit typechecks are considered bad practice in general, there are a
couple of valid reasons to use them.</p></li>
<li><p>No creation of a dependency on Numeric in pickle
files (though this could also be done by a special case
in the pickling code for arrays)</p></li>
</ul>
</li>
<li><p>Cons:</p>
<ul>
<li><p>It is difficult to write generic code because scalars
do not have the same methods and attributes as arrays.
(such as <code class="docutils literal notranslate"><span class="pre">.type</span></code> or <code class="docutils literal notranslate"><span class="pre">.shape</span></code>). Also Python scalars have
different numeric behavior as well.</p></li>
<li><p>This results in a special-case checking that is not
pleasant. Fundamentally it lets the user believe that
somehow multidimensional homogeneous arrays
are something like Python lists (which except for
Object arrays they are not).</p></li>
</ul>
</li>
</ul>
<p>NumPy implements a solution that is designed to have all the pros and none of the cons above.</p>
<blockquote>
<div><p>Create Python scalar types for all of the 21 types and also
inherit from the three that already exist. Define equivalent
methods and attributes for these Python scalar types.</p>
</div></blockquote>
</section>
<section id="the-need-for-zero-rank-arrays">
<h2>The need for zero-rank arrays<a class="headerlink" href="#the-need-for-zero-rank-arrays" title="Link to this heading">#</a></h2>
<p>Once the idea to use zero-rank arrays to represent scalars was rejected, it was
natural to consider whether zero-rank arrays can be eliminated altogether.
However there are some important use cases where zero-rank arrays cannot be
replaced by array scalars. See also <a class="reference external" href="https://mail.python.org/pipermail/numpy-discussion/2006-February/006384.html">A case for rank-0 arrays</a> from February
2006.</p>
<ul>
<li><p>Output arguments:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>>>> y = int_(5)
>>> add(5,5,x)
array(10)
>>> x
array(10)
>>> add(5,5,y)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: return arrays must be of ArrayType
</pre></div>
</div>
</li>
<li><p>Shared data:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">x</span> <span class="o">=</span> <span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">y</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">2</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">y</span><span class="o">.</span><span class="n">shape</span> <span class="o">=</span> <span class="p">()</span>
<span class="gp">>>> </span><span class="n">y</span>
<span class="go">array(2)</span>
<span class="gp">>>> </span><span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">20</span>
<span class="gp">>>> </span><span class="n">y</span>
<span class="go">array(20)</span>
</pre></div>
</div>
</li>
</ul>
</section>
<section id="indexing-of-zero-rank-arrays">
<h2>Indexing of zero-rank arrays<a class="headerlink" href="#indexing-of-zero-rank-arrays" title="Link to this heading">#</a></h2>
<p>As of NumPy release 0.9.3, zero-rank arrays do not support any indexing:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">x</span><span class="p">[</span><span class="o">...</span><span class="p">]</span>
<span class="gt">Traceback (most recent call last):</span>
File <span class="nb">"<stdin>"</span>, line <span class="m">1</span>, in <span class="n">?</span>
<span class="gr">IndexError</span>: <span class="n">0-d arrays can't be indexed.</span>
</pre></div>
</div>
<p>On the other hand there are several cases that make sense for rank-zero arrays.</p>
<section id="ellipsis-and-empty-tuple">
<h3>Ellipsis and empty tuple<a class="headerlink" href="#ellipsis-and-empty-tuple" title="Link to this heading">#</a></h3>
<p>Alexander started a <a class="reference external" href="https://mail.python.org/pipermail/numpy-discussion/2006-January/005579.html">Jan 2006 discussion</a> on scipy-dev
with the following proposal:</p>
<blockquote>
<div><p>… it may be reasonable to allow <code class="docutils literal notranslate"><span class="pre">a[...]</span></code>. This way
ellipsis can be interpreted as any number of <code class="docutils literal notranslate"><span class="pre">:</span></code> s including zero.
Another subscript operation that makes sense for scalars would be
<code class="docutils literal notranslate"><span class="pre">a[...,newaxis]</span></code> or even <code class="docutils literal notranslate"><span class="pre">a[{newaxis,</span> <span class="pre">}*</span> <span class="pre">...,</span> <span class="pre">{newaxis,}*]</span></code>, where
<code class="docutils literal notranslate"><span class="pre">{newaxis,}*</span></code> stands for any number of comma-separated newaxis tokens.
This will allow one to use ellipsis in generic code that would work on
any numpy type.</p>
</div></blockquote>
<p>Francesc Altet supported the idea of <code class="docutils literal notranslate"><span class="pre">[...]</span></code> on zero-rank arrays and
<a class="reference external" href="https://mail.python.org/pipermail/numpy-discussion/2006-January/005572.html">suggested</a> that <code class="docutils literal notranslate"><span class="pre">[()]</span></code> be supported as well.</p>
<p>Francesc’s proposal was:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">65</span><span class="p">]:</span> <span class="nb">type</span><span class="p">(</span><span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mi">0</span><span class="p">)[</span><span class="o">...</span><span class="p">])</span>
<span class="n">Out</span><span class="p">[</span><span class="mi">65</span><span class="p">]:</span> <span class="o"><</span><span class="nb">type</span> <span class="s1">'numpy.ndarray'</span><span class="o">></span>
<span class="n">In</span> <span class="p">[</span><span class="mi">66</span><span class="p">]:</span> <span class="nb">type</span><span class="p">(</span><span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mi">0</span><span class="p">)[()])</span> <span class="c1"># Indexing a la numarray</span>
<span class="n">Out</span><span class="p">[</span><span class="mi">66</span><span class="p">]:</span> <span class="o"><</span><span class="nb">type</span> <span class="s1">'int32_arrtype'</span><span class="o">></span>
<span class="n">In</span> <span class="p">[</span><span class="mi">67</span><span class="p">]:</span> <span class="nb">type</span><span class="p">(</span><span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">item</span><span class="p">())</span> <span class="c1"># already works</span>
<span class="n">Out</span><span class="p">[</span><span class="mi">67</span><span class="p">]:</span> <span class="o"><</span><span class="nb">type</span> <span class="s1">'int'</span><span class="o">></span>
</pre></div>
</div>
<p>There is a consensus that for a zero-rank array <code class="docutils literal notranslate"><span class="pre">x</span></code>, both <code class="docutils literal notranslate"><span class="pre">x[...]</span></code> and <code class="docutils literal notranslate"><span class="pre">x[()]</span></code> should be valid, but the question
remains on what should be the type of the result - zero rank ndarray or <code class="docutils literal notranslate"><span class="pre">x.dtype</span></code>?</p>
<dl>
<dt>(Alexander)</dt><dd><p>First, whatever choice is made for <code class="docutils literal notranslate"><span class="pre">x[...]</span></code> and <code class="docutils literal notranslate"><span class="pre">x[()]</span></code> they should be
the same because <code class="docutils literal notranslate"><span class="pre">...</span></code> is just syntactic sugar for “as many <cite>:</cite> as
necessary”, which in the case of zero rank leads to <code class="docutils literal notranslate"><span class="pre">...</span> <span class="pre">=</span> <span class="pre">(:,)*0</span> <span class="pre">=</span> <span class="pre">()</span></code>.
Second, rank zero arrays and numpy scalar types are interchangeable within
numpy, but numpy scalars can be use in some python constructs where ndarrays
can’t. For example:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="p">(</span><span class="mi">1</span><span class="p">,)[</span><span class="n">array</span><span class="p">(</span><span class="mi">0</span><span class="p">)]</span>
<span class="gt">Traceback (most recent call last):</span>
File <span class="nb">"<stdin>"</span>, line <span class="m">1</span>, in <span class="n">?</span>
<span class="gr">TypeError</span>: <span class="n">tuple indices must be integers</span>
<span class="gp">>>> </span><span class="p">(</span><span class="mi">1</span><span class="p">,)[</span><span class="n">int32</span><span class="p">(</span><span class="mi">0</span><span class="p">)]</span>
<span class="go">1</span>
</pre></div>
</div>
</dd>
</dl>
<p>Since most if not all numpy function automatically convert zero-rank arrays to scalars on return, there is no reason for
<code class="docutils literal notranslate"><span class="pre">[...]</span></code> and <code class="docutils literal notranslate"><span class="pre">[()]</span></code> operations to be different.</p>
<p>See SVN changeset 1864 (which became git commit <a class="reference external" href="https://github.com/numpy/numpy/commit/9024ff0dc052888b5922dde0f3e615607a9e99d7">9024ff0</a>) for
implementation of <code class="docutils literal notranslate"><span class="pre">x[...]</span></code> and <code class="docutils literal notranslate"><span class="pre">x[()]</span></code> returning numpy scalars.</p>
<p>See SVN changeset 1866 (which became git commit <a class="reference external" href="https://github.com/numpy/numpy/commit/743d922bf5893acf00ac92e823fe12f460726f90">743d922</a>) for
implementation of <code class="docutils literal notranslate"><span class="pre">x[...]</span> <span class="pre">=</span> <span class="pre">v</span></code> and <code class="docutils literal notranslate"><span class="pre">x[()]</span> <span class="pre">=</span> <span class="pre">v</span></code></p>
</section>
<section id="increasing-rank-with-newaxis">
<h3>Increasing rank with newaxis<a class="headerlink" href="#increasing-rank-with-newaxis" title="Link to this heading">#</a></h3>
<p>Everyone who commented liked this feature, so as of SVN changeset 1871 (which became git commit <a class="reference external" href="https://github.com/numpy/numpy/commit/b32744e3fc5b40bdfbd626dcc1f72907d77c01c4">b32744e</a>) any number of ellipses and
newaxis tokens can be placed as a subscript argument for a zero-rank array. For
example:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">x</span> <span class="o">=</span> <span class="n">array</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">x</span><span class="p">[</span><span class="n">newaxis</span><span class="p">,</span><span class="o">...</span><span class="p">,</span><span class="n">newaxis</span><span class="p">,</span><span class="o">...</span><span class="p">]</span>
<span class="go">array([[1]])</span>
</pre></div>
</div>
<p>It is not clear why more than one ellipsis should be allowed, but this is the
behavior of higher rank arrays that we are trying to preserve.</p>
</section>
<section id="refactoring">
<h3>Refactoring<a class="headerlink" href="#refactoring" title="Link to this heading">#</a></h3>
<p>Currently all indexing on zero-rank arrays is implemented in a special <code class="docutils literal notranslate"><span class="pre">if</span> <span class="pre">(nd</span>
<span class="pre">==</span> <span class="pre">0)</span></code> branch of code that used to always raise an index error. This ensures
that the changes do not affect any existing usage (except, the usage that
relies on exceptions). On the other hand part of motivation for these changes
was to make behavior of ndarrays more uniform and this should allow to
eliminate <code class="docutils literal notranslate"><span class="pre">if</span> <span class="pre">(nd</span> <span class="pre">==</span> <span class="pre">0)</span></code> checks altogether.</p>
</section>
</section>
<section id="copyright">
<h2>Copyright<a class="headerlink" href="#copyright" title="Link to this heading">#</a></h2>
<p>The original document appeared on the scipy.org wiki, with no Copyright notice, and its <a class="reference external" href="https://web.archive.org/web/20100503065506/http://projects.scipy.org:80/numpy/wiki/ZeroRankArray?action=history">history</a> attributes it to sasha.</p>
</section>
</section>
</article>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#zero-rank-arrays">Zero-rank arrays</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#zero-rank-arrays-and-array-scalars">Zero-rank arrays and array scalars</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#motivation-for-array-scalars">Motivation for array scalars</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#the-need-for-zero-rank-arrays">The need for zero-rank arrays</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#indexing-of-zero-rank-arrays">Indexing of zero-rank arrays</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#ellipsis-and-empty-tuple">Ellipsis and empty tuple</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#increasing-rank-with-newaxis">Increasing rank with newaxis</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#refactoring">Refactoring</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#copyright">Copyright</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="_static/scripts/bootstrap.js?digest=26a4bc78f4c0ddb94549"></script>
<script defer src="_static/scripts/pydata-sphinx-theme.js?digest=26a4bc78f4c0ddb94549"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<p class="copyright">
© Copyright 2017-2024, NumPy Developers.
<br/>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.2.6.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item">
<p class="theme-version">
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.0.
</p></div>
</div>
</div>
</footer>
</body>
</html>