-
Notifications
You must be signed in to change notification settings - Fork 16
SingaAuto Predictor API
naili-xing edited this page Jul 25, 2020
·
8 revisions
In singa-auto, no matter upload one image or many images with mutipart/form-data, the predict methods will always get a list of PIL images, so the model' predict must handle [PIL.images],
Singa-auto can't detect if it's one example or many examples, so singa-auto will wrapper the input json data with a list. the model's predict must handle List[Any], here Any is the "whole thing" u uploaded,
In order to avoid some error, please return a list, the length of the list should be the same as the query (list[Any]) If u return a list in models' predict method, the result will be directly return to the user as a response. singa-auto will not do anything.
const formData = new FormData()
// append(<whatever name>, value, <namePropterty>)
console.log("selectedFiles[0]: ", this.state.selectedFiles[0])
formData.append("img", this.state.selectedFiles[0])
try {
const res = await axios.post(
`http://${this.state.predictorHost}/predict`,
formData,
{
headers: {
'Content-Type': 'multipart/form-data',
//"Authorization": `Bearer ${this.props.reduxToken}`
},
onUploadProgress: progressEvent => {
// progressEvent will contain loaded and total
let percentCompleted = parseInt(
Math.round( (progressEvent.loaded * 100) / progressEvent.total )
)
console.log("From EventEmiiter, file Uploaded: ", percentCompleted)
this.setState({
uploadPercentage: percentCompleted
})
}
}
);
2. if upload data not files, using application/json: make sure provide a header here, examples code:
var req = new XMLHttpRequest();
req.open("POST", "http://ncrs.d2.comp.nus.edu.sg:3005/BigramHmm");
**req.setRequestHeader('Content-Type', 'application/json')**
var f = ['Ms.', 'Haag', 'plays', 'Elianti', '18', '.']
data = JSON.stringify(f)
req.send(data);
predictor_host = "ncrs.d2.comp.nus.edu.sg:3005/PyPandaVgg_xray_10epoch"
query_path = "./IM-0164-0001.jpeg"
files = {'img': open(query_path, 'rb')}
res = requests.post('http://{}'.format(predictor_host), files=files)
print(res.text)
Paramters:
- File:
- 'img': bytes
- Responses:
[{
explanation: {
gradcam_img: base64,
lime_img: base64
},
mc_dropout: [
{
label: string,
mean: num,
std: num
},
{
label: string,
mean: num,
std: num
},
...
]
}]
# 1. create model
client.create_model(
name='questionAnswer',
task='question_answer',
model_file_path='./Question_Answering.py',
model_class='QuestionAnswering',
model_preload_file_path="./covid19data.zip",
dependencies={"torch": "1.0.1", "torchvision": "0.2.2",
"semanticscholar": "0.1.4",
"sentence_transformers": "0.2.6.1",
"tqdm": "4.27"}
)
# 2. create inference service
print(client.create_inference_job_by_checkpoint(model_name='questionAnswer'))
# 3. do prediction
predictor_host = "ncrs.d2.comp.nus.edu.sg:3005/questionAnswer"
data = {
"Task1":
{'area': 'What is known about transmission, incubation, and environmental stability?',
'questions': ['What is the range of the incubation period in humans?',
]
},
}
data = json.dumps(data)
res = requests.post('http://{}'.format(predictor_host), data=data)
print(res.text)
Responses:
html string
# 1. create model, zip file should includes yolov3-food.cfg, yolov3-food_final.weights, food.names, xception weight,food101.npy, refer to the code for details
client.create_model(
name='food101_v3',
task='image_detection',
model_file_path='./food101.py',
model_class='FoodDetection101',
model_preload_file_path="./food101.zip",
dependencies={"keras": "2.2.4", "tensorflow": "1.12.0"}
)
# 2. create inference service
print(client.create_inference_job_by_checkpoint(model_name='food101_v3'))
# 3. do prediction
predictor_host = "ncrs.d2.comp.nus.edu.sg:3005/food101_v3"
query_path = "/examples/data/object_detection/000002.jpg"
files = {'img': open(query_path, 'rb')}
res = requests.post('http://{}'.format(predictor_host), files=files)
print(res.text)
- Responses: return a json string
[
{
predictions: [
{
detection_box: [float],
label: string,
label_id: string,
probability: float
}],
status: string
}
]
example: '[{"predictions":[{"detection_box":[0.46903259085810833,0.11065910062142081,0.9265644759812615,0.7505181238737905],"label":"omelette","label_id":"67","probability":0.9999932646751404}],"status":"ok"}]'