-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild.py
1274 lines (1180 loc) · 50.8 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import multiprocessing as mp
import os
import time
from collections import OrderedDict
# isort: off
import torch
import tensorrt as trt
# isort: on
from allowed_configs import (get_allowed_models, get_build_config,
get_model_family)
from base_benchmark import get_engine_name, serialize_engine
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.functional import LayerNormPositionType, LayerNormType
from tensorrt_llm.layers import MoeConfig, PositionEmbeddingType
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import PretrainedConfig, quantize_model
from tensorrt_llm.models.modeling_utils import optimize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
def parse_arguments():
parser = argparse.ArgumentParser(description='Build TensorRT-LLM models.')
parser.add_argument('-m',
'--model',
type=str,
required=True,
choices=get_allowed_models(),
help='Specify model you want to build.')
parser.add_argument(
'--mode',
type=str,
default="plugin",
choices=['ootb', 'plugin', 'plugin-ifb', 'ootb-except-mha'],
help=
('Choose mode between ootb/plugin/ootb-except-mha. '
'\"ootb\" means the engines will be built without any plugins, '
'\"plugin\" means the engines will be built with tuned recipe of using plugins.'
'\"plugin-ifb\" will include additional options required for inflight batching.'
'\"ootb-except-mha\" means the engines will be built with only attention plugins.'
))
parser.add_argument(
'--dtype',
type=str,
default='float16',
choices=['float16', 'bfloat16', 'float32'],
help='Choose data type between float16/bfloat16/float32.')
parser.add_argument(
'--quantization',
type=str,
default=None,
choices=[
'fp8', 'fp8_gemm', 'fp8_kv_cache', 'int8_sq_per_tensor',
'int8_sq_per_token_channel', 'int8_weight_only', 'int4_weight_only',
'int4_weight_only_awq', 'int4_weight_only_gptq'
],
help="Optimize the model with specified quantization recipe")
parser.add_argument(
'--profiling_verbosity',
type=str,
default='layer_names_only',
choices=['layer_names_only', 'detailed', 'none'],
help=
'The profiling verbosity for the generated TRT engine. Set to detailed can inspect tactic choices and kernel parameters.'
)
parser.add_argument(
'--log_level',
type=str,
default="error",
choices=['verbose', 'info', 'warning', 'error', 'internal_error'],
help=
'Choose log level between verbose/info/warning/error/internal_error.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='TensorRT engines will be saved to the specified path.')
parser.add_argument(
'--max_beam_width',
type=int,
default=None,
help=
('If this option is specified, it will override the max beam width of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument(
'--max_input_len',
type=int,
default=None,
help=
('If this option is specified, it will override the max input len of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument(
'--max_output_len',
type=int,
default=None,
help=
('If this option is specified, it will override the max output len of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument(
'--max_batch_size',
type=int,
default=None,
help=
('If this option is specified, it will override the max batch size of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument('--force_num_layer_1',
default=False,
action='store_true',
help='Quick sanity check with num_layer=1.')
parser.add_argument('--serial_build',
default=False,
action='store_true',
help="Build engines serially")
parser.add_argument('--strongly_typed',
default=False,
action='store_true',
help='This option will reduce the building time.')
parser.add_argument(
'--rank',
type=int,
default=None,
help=
"The rank of the model to be built, only used when --serial_build is specified"
)
parser.add_argument(
'--world_size',
type=int,
default=None,
help=
"The number of gpus to be used for inference, only used when --serial_build is specified"
)
return parser.parse_args()
def get_quant_mode(quantization):
quant_mode = QuantMode(0)
use_smooth_quant = False
per_token = False
per_channel = False
weight_only_precision = 'int8'
if quantization == "fp8":
quant_mode = quant_mode.set_fp8_qdq()
quant_mode = quant_mode.set_fp8_kv_cache()
elif quantization == "fp8_gemm":
quant_mode = quant_mode.set_fp8_qdq()
elif quantization == "fp8_kv_cache":
quant_mode = quant_mode.set_fp8_kv_cache()
elif quantization == "int8_sq_per_tensor":
use_smooth_quant = True
quant_mode = QuantMode.use_smooth_quant(per_token, per_channel)
elif quantization == "int8_sq_per_token_channel":
use_smooth_quant = True
per_token = True
per_channel = True
quant_mode = QuantMode.use_smooth_quant(per_token, per_channel)
elif quantization == "int8_weight_only":
use_smooth_quant = False
weight_only_precision = 'int8'
quant_mode = QuantMode.use_weight_only(use_int4_weights=False)
elif quantization == "int4_weight_only":
weight_only_precision = 'int4'
quant_mode = QuantMode.use_weight_only(use_int4_weights=True)
elif quantization == "int4_weight_only_awq":
weight_only_precision = 'int4_awq'
quant_mode = QuantMode.from_description(quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=True,
use_int4_weights=True)
elif quantization == "int4_weight_only_gptq":
weight_only_precision = 'int4_gptq'
quant_mode = QuantMode.from_description(quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=True,
use_int4_weights=True)
elif quantization is None:
pass
else:
raise Exception(f'Unexpected quantization: {quantization}')
return quant_mode, use_smooth_quant, weight_only_precision
def get_quant_algo(quantization):
if quantization == "fp8":
return "FP8", "FP8"
elif quantization == "fp8_gemm":
return "FP8", None
elif quantization == "fp8_kv_cache":
return None, "FP8"
elif quantization == "int8_sq_per_tensor":
return "W8A8_SQ_PER_TENSOR_PLUGIN", None
elif quantization == "int8_sq_per_token_channel":
return "W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN", None
elif quantization == "int8_weight_only":
return "W8A16", None
elif quantization == "int4_weight_only":
return "W4A16", None
elif quantization == "int4_weight_only_awq":
return "W4A16_AWQ", None
elif quantization == "int4_weight_only_gptq":
return "W4A16_GPTQ", None
elif quantization is None:
return None, None
def build_gpt(args):
build_config = get_build_config(args.model)
if args.force_num_layer_1:
build_config['num_layers'] = 1
# More parameters
if args.serial_build and args.rank is not None and args.world_size is not None:
runtime_rank = args.rank
world_size = args.world_size
else:
runtime_rank = tensorrt_llm.mpi_rank()
world_size = tensorrt_llm.mpi_world_size()
if not args.serial_build:
torch.cuda.set_device(runtime_rank)
strongly_typed = args.strongly_typed
if args.quantization is not None and "fp8" in args.quantization:
strongly_typed = True
num_kv_heads = build_config['num_heads'] \
if build_config['num_kv_heads'] is None else build_config['num_kv_heads']
apply_query_key_layer_scaling = False
max_batch_size = build_config['max_batch_size'] \
if args.max_batch_size is None else args.max_batch_size
max_input_len = build_config['max_input_len'] \
if args.max_input_len is None else args.max_input_len
max_output_len = build_config['max_output_len'] \
if args.max_output_len is None else args.max_output_len
max_beam_width = build_config['max_beam_width'] \
if args.max_beam_width is None else args.max_beam_width
quant_mode, use_smooth_quant, weight_only_precision = get_quant_mode(
args.quantization)
use_weight_only = quant_mode.is_weight_only()
builder = Builder()
builder_config = builder.create_builder_config(
name=args.model,
precision=args.dtype,
timing_cache=None,
profiling_verbosity=args.profiling_verbosity,
tensor_parallel=world_size, # TP only
parallel_build=True,
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
num_kv_heads=num_kv_heads,
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
apply_query_key_layer_scaling=apply_query_key_layer_scaling,
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_output_len=max_output_len,
int8=(quant_mode.has_act_and_weight_quant()
or quant_mode.is_int8_weight_only()),
quant_mode=quant_mode,
use_refit=False,
opt_level=build_config['builder_opt'],
strongly_typed=strongly_typed)
engine_name = get_engine_name(args.model, args.dtype, world_size,
runtime_rank)
kv_dtype = str_dtype_to_trt(args.dtype)
# Initialize Module
family = get_model_family(args.model)
if family == "gpt":
tensorrt_llm_model = tensorrt_llm.models.GPTLMHeadModel(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
dtype=kv_dtype,
mapping=tensorrt_llm.Mapping(world_size=world_size,
tp_size=world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
position_embedding_type=PositionEmbeddingType.learned_absolute
if build_config['position_embedding_type'] is None else
PositionEmbeddingType[build_config['position_embedding_type']],
rotary_embedding_percentage=build_config['rotary_pct'],
quant_mode=quant_mode,
bias=build_config['bias'],
moe_config=MoeConfig(build_config["moe_num_experts"],
build_config["moe_top_k"]))
elif family == "opt":
config = {
'architecture': 'OPTForCausalLM',
'dtype': args.dtype,
'vocab_size': build_config['vocab_size'],
'hidden_size': build_config['hidden_size'],
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'hidden_act': build_config['hidden_act'],
'max_position_embeddings': build_config['n_positions'],
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'use_parallel_embedding': False,
'share_embedding_table': False,
'embedding_sharding_dim': 0,
'do_layer_norm_before': build_config['do_layer_norm_before'],
'quantization': {
'group_size': 128
}
}
quant_algo, kv_cache_quant_algo = get_quant_algo(args.quantization)
config['quantization']['quant_algo'] = quant_algo
config['quantization']['kv_cache_quant_algo'] = kv_cache_quant_algo
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.OPTForCausalLM(config)
elif family == "llama":
config = {
'architecture':
'LLaMAForCausalLM',
'dtype':
args.dtype,
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'num_key_value_heads':
build_config['num_heads'] if build_config['num_kv_heads'] is None
else build_config['num_kv_heads'],
'hidden_size':
build_config['hidden_size'],
'vocab_size':
build_config['vocab_size'],
'position_embedding_type':
'rope_gpt_neox',
'max_position_embeddings':
build_config['n_positions'],
'hidden_act':
build_config['hidden_act'],
'quantization': {
'group_size': 128
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'moe_num_experts':
build_config["moe_num_experts"],
'moe_top_k':
build_config["moe_top_k"],
}
quant_algo, kv_cache_quant_algo = get_quant_algo(args.quantization)
config['quantization']['quant_algo'] = quant_algo
config['quantization']['kv_cache_quant_algo'] = kv_cache_quant_algo
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.LLaMAForCausalLM(config)
elif family == "gptj":
config = {
'architecture': 'GPTJForCausalLM',
'dtype': args.dtype,
'vocab_size': build_config['vocab_size'],
'hidden_size': build_config['hidden_size'],
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'hidden_act': build_config['hidden_act'],
'max_position_embeddings': build_config['n_positions'],
'rotary_dim': build_config['rotary_dim'],
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'use_parallel_embedding': False,
'share_embedding_table': False,
'embedding_sharding_dim': 0,
'do_layer_norm_before': build_config['do_layer_norm_before'],
'quantization': {
'group_size': 128
}
}
quant_algo, kv_cache_quant_algo = get_quant_algo(args.quantization)
config['quantization']['quant_algo'] = quant_algo
config['quantization']['kv_cache_quant_algo'] = kv_cache_quant_algo
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.GPTJForCausalLM(config)
elif family == "gptneox":
config = {
'architecture':
'GPTNeoXForCausalLM',
'dtype':
args.dtype,
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'hidden_size':
build_config['hidden_size'],
'vocab_size':
build_config['vocab_size'],
'position_embedding_type':
'learned_absolute',
'max_position_embeddings':
build_config['n_positions'],
'rotary_emb_base':
10000,
'rotary_pct':
1.0 * build_config['rotary_dim'] * build_config['num_heads'] /
build_config['hidden_size'],
'hidden_act':
build_config['hidden_act'],
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'use_parallel_embedding':
False,
'share_embedding_table':
False,
'embedding_sharding_dim':
0,
'quantization': {
'group_size': 128,
}
}
quant_algo, kv_cache_quant_algo = get_quant_algo(args.quantization)
config['quantization']['quant_algo'] = quant_algo
config['quantization']['kv_cache_quant_algo'] = kv_cache_quant_algo
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.GPTNeoXForCausalLM(config)
elif family == "chatglm":
quant_algo, kv_cache_quant_algo = get_quant_algo(args.quantization)
config = {
'architecture': 'ChatGLMForCausalLM',
'dtype': args.dtype,
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'num_key_value_heads': build_config['num_kv_heads'],
'hidden_size': build_config['hidden_size'],
'intermediate_size': build_config['inter_size'],
'norm_epsilon': 1e-5,
'vocab_size': build_config['vocab_size'],
'position_embedding_type': 'chatglm',
'max_position_embeddings': build_config['n_positions'],
'hidden_act': build_config['hidden_act'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'chatglm_version': 'chatglm',
'add_bias_linear': True,
'add_qkv_bias': True,
'apply_query_key_layer_scaling': False,
'apply_residual_connection_post_layernorm': False,
'rmsnorm': False,
'rope_ratio': 1.0,
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.ChatGLMForCausalLM(config)
elif family in ["chatglm2", "chatglm3"]:
quant_algo, kv_cache_quant_algo = get_quant_algo(args.quantization)
config = {
'architecture': 'ChatGLMForCausalLM',
'dtype': args.dtype,
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'num_key_value_heads': build_config['num_kv_heads'],
'hidden_size': build_config['hidden_size'],
'intermediate_size': build_config['inter_size'],
'norm_epsilon': 1e-5,
'vocab_size': build_config['vocab_size'],
'position_embedding_type': 'rope_gptj',
'max_position_embeddings': build_config['n_positions'],
'hidden_act': build_config['hidden_act'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'chatglm_version': family,
'add_bias_linear': False,
'add_qkv_bias': True,
'apply_query_key_layer_scaling': False,
'apply_residual_connection_post_layernorm': False,
'rmsnorm': True,
'rope_ratio': 1.0,
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.ChatGLMForCausalLM(config)
elif family == "bloom":
config = {
'architecture': 'BloomForCausalLM',
'dtype': args.dtype,
'vocab_size': build_config['vocab_size'],
'hidden_size': build_config['hidden_size'],
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'hidden_act': build_config['hidden_act'],
'max_position_embeddings': build_config['n_positions'],
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'use_parallel_embedding': (args.model == 'bloom_176b'),
'share_embedding_table': False,
'embedding_sharding_dim': 0,
'quantization': {
'group_size': 128
}
}
quant_algo, kv_cache_quant_algo = get_quant_algo(args.quantization)
config['quantization']['quant_algo'] = quant_algo
config['quantization']['kv_cache_quant_algo'] = kv_cache_quant_algo
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.BloomForCausalLM(config)
elif family == "falcon":
config = {
'architecture':
'FalconForCausalLM',
'dtype':
args.dtype,
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'num_key_value_heads':
build_config['num_heads'] if build_config['num_kv_heads'] is None
else build_config['num_kv_heads'],
'hidden_size':
build_config['hidden_size'],
'vocab_size':
build_config['vocab_size'],
'position_embedding_type':
'alibi_with_scale'
if build_config['use_alibi'] else 'rope_gpt_neox',
'max_position_embeddings':
build_config['n_positions'],
'hidden_act':
build_config['hidden_act'],
'quantization': {
'group_size': 128
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'bias':
build_config['bias'],
'parallel_attention':
build_config['parallel_attention'],
'new_decoder_architecture':
build_config['new_decoder_architecture'],
}
quant_algo, kv_cache_quant_algo = get_quant_algo(args.quantization)
config['quantization']['quant_algo'] = quant_algo
config['quantization']['kv_cache_quant_algo'] = kv_cache_quant_algo
if quant_mode.is_weight_only() and quant_mode.has_per_group_scaling():
config['quantization'].update({
'has_zero_point': False,
'pre_quant_scale': True,
'exclude_modules': [],
})
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.FalconForCausalLM(config)
elif family == "baichuan":
config = {
'architecture':
'BaichuanForCausalLM',
'dtype':
args.dtype,
'logits_dtype':
'float32',
'vocab_size':
build_config['vocab_size'],
'max_position_embeddings':
build_config['n_positions'],
'hidden_size':
build_config['hidden_size'],
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'num_key_value_heads':
build_config['num_heads'],
'hidden_act':
build_config['hidden_act'],
'intermediate_size':
build_config['inter_size'],
'position_embedding_type':
'alibi_with_scale' if '7b' in args.model else 'rope_gpt_neox',
'quantization': {
'group_size': 128
},
'mapping': {
'world_size': world_size,
'tp_size': world_size,
},
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.BaichuanForCausalLM(config)
elif family == "internlm":
quant_algo, kv_cache_quant_algo = get_quant_algo(args.quantization)
config = {
'architecture':
'LLaMAForCausalLM',
'dtype':
args.dtype,
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'num_key_value_heads':
build_config['num_heads'] if build_config['num_kv_heads'] is None
else build_config['num_kv_heads'],
'hidden_size':
build_config['hidden_size'],
'vocab_size':
build_config['vocab_size'],
'position_embedding_type':
'rope_gpt_neox',
'max_position_embeddings':
build_config['n_positions'],
'hidden_act':
build_config['hidden_act'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'attn_bias':
build_config['bias'],
}
if quant_mode.is_weight_only():
if weight_only_precision == 'int4_awq':
config['quantization'].update({
"group_size": 128,
"has_zero_point": False,
"pre_quant_scale": True,
"exclude_modules": [],
})
elif weight_only_precision == 'int4_gptq':
config['quantization'].update({
"group_size": 128,
"has_zero_point": True,
"pre_quant_scale": False,
})
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.LLaMAForCausalLM(config)
elif family == "qwen":
tensorrt_llm_model = tensorrt_llm.models.QWenForCausalLM(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
num_kv_heads=num_kv_heads,
hidden_size=build_config['hidden_size'],
seq_length=2048,
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
dtype=kv_dtype,
mlp_hidden_size=build_config['inter_size'],
neox_rotary_style=True,
mapping=tensorrt_llm.Mapping(world_size=world_size,
tp_size=world_size), # TP only
use_parallel_embedding=False,
embedding_sharding_dim=1,
quant_mode=quant_mode)
elif family == "mamba":
config = {
'architecture': 'MambaLMHeadModel',
'dtype': args.dtype,
'vocab_size': build_config['vocab_size'],
'hidden_size': build_config['hidden_size'],
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'hidden_act': build_config['hidden_act'],
"ssm_cfg": {},
"rms_norm": True,
"residual_in_fp32": True,
"pad_vocab_size_multiple": 8,
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.MambaLMHeadModel(config)
else:
raise Exception(f'Unexpected model: {args.model}')
quant_kwargs = {}
if family not in ['opt', 'bloom', 'falcon', 'llama', 'gptj', 'internlm']:
tensorrt_llm_model = quantize_model(tensorrt_llm_model, quant_mode,
**quant_kwargs)
if family in ['llama']:
tensorrt_llm_model = optimize_model(tensorrt_llm_model,
use_fused_mlp=True)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
network.plugin_config.to_legacy_setting()
# Plugins
if args.mode in ['plugin', 'plugin-ifb']:
network.plugin_config.set_gpt_attention_plugin(dtype=args.dtype)
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
network.plugin_config.enable_remove_input_padding()
network.plugin_config.set_lookup_plugin(dtype=args.dtype)
network.plugin_config.set_moe_plugin(dtype=args.dtype)
if args.quantization is None or "fp8" not in args.quantization:
network.plugin_config.set_gemm_plugin(dtype=args.dtype)
# Quantization plugins.
if use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype=args.dtype)
network.plugin_config.set_layernorm_quantization_plugin(
dtype=args.dtype)
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
elif use_weight_only:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.dtype)
elif family == "llama" and quant_mode.has_act_and_weight_quant():
# RMS norm plugin for SmoothQuant
network.plugin_config.set_rmsnorm_quantization_plugin(
dtype=args.dtype)
# Inflight batching
if args.mode == 'plugin-ifb':
network.plugin_config.enable_paged_kv_cache()
elif args.mode == 'ootb-except-mha':
network.plugin_config.set_gpt_attention_plugin(dtype=args.dtype)
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if world_size > 1:
network.plugin_config.set_nccl_plugin(
dtype=args.dtype,
use_custom_all_reduce=build_config["use_custom_all_reduce"])
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_model.named_parameters())
# Forward
inputs = tensorrt_llm_model.prepare_inputs(
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_seq_len=max_input_len + max_output_len,
use_cache=True,
max_beam_width=max_beam_width)
if family in [
'opt', 'bloom', 'falcon', 'llama', 'internlm', 'gptneox',
'gptj', 'mamba', 'baichuan', 'chatglm', 'chatglm2', 'chatglm3'
]:
tensorrt_llm_model(**inputs)
else:
tensorrt_llm_model(*inputs)
if args.mode in ['plugin', 'plugin-ifb']:
tensorrt_llm.graph_rewriting.optimize(network)
# Network -> Engine
start = time.time()
engine = builder.build_engine(network, builder_config)
assert engine is not None, f'Failed to build engine for rank {runtime_rank}'
build_time = round(time.time() - start, 2)
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
serialize_path = os.path.join(args.output_dir, engine_name)
serialize_engine(engine, serialize_path)
if runtime_rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder_config.plugin_config = network.plugin_config
builder.save_config(builder_config, config_path)
return engine, build_time
def build_bert(args):
family = get_model_family(args.model)
build_config = get_build_config(args.model)
if args.force_num_layer_1:
build_config['num_layers'] = 1
# More parameters
if args.serial_build and args.rank is not None and args.world_size is not None:
runtime_rank = args.rank
world_size = args.world_size
else:
runtime_rank = tensorrt_llm.mpi_rank()
world_size = tensorrt_llm.mpi_world_size()
if not args.serial_build:
torch.cuda.set_device(runtime_rank)
num_kv_heads = build_config['num_heads'] \
if build_config['num_kv_heads'] is None else build_config['num_kv_heads']
max_batch_size = build_config['max_batch_size'] \
if args.max_batch_size is None else args.max_batch_size
max_input_len = build_config['max_input_len'] \
if args.max_input_len is None else args.max_input_len
bs_range = [1, (max_batch_size + 1) // 2, max_batch_size]
inlen_range = [1, (max_input_len + 1) // 2, max_input_len]
builder = Builder()
builder_config = builder.create_builder_config(
name=args.model,
precision=args.dtype,
timing_cache=None,
profiling_verbosity=args.profiling_verbosity,
tensor_parallel=world_size, # TP only
parallel_build=True,
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
num_kv_heads=num_kv_heads,
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
max_batch_size=max_batch_size,
max_input_len=max_input_len,
opt_level=build_config['builder_opt'])
engine_name = get_engine_name(args.model, args.dtype, world_size,
runtime_rank)
# Initialize model
tensorrt_llm_bert = tensorrt_llm.models.BertModel(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
type_vocab_size=build_config['type_vocab_size'],
pad_token_id=None
if family == 'bert' else 1, # hard code for RoBERTa here
is_roberta=(family == 'roberta'),
mapping=tensorrt_llm.Mapping(world_size=world_size, tp_size=world_size),
dtype=str_dtype_to_trt(args.dtype))
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
network.plugin_config.to_legacy_setting()
# Plugins
if args.mode == 'plugin':
network.plugin_config.set_bert_attention_plugin(dtype=args.dtype)
network.plugin_config.set_gemm_plugin(dtype=args.dtype)
network.plugin_config.enable_qk_half_accum()
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
elif args.mode == 'ootb-except-mha':
network.plugin_config.set_bert_attention_plugin(dtype=args.dtype)
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if world_size > 1:
network.plugin_config.set_nccl_plugin(
dtype=args.dtype,
use_custom_all_reduce=build_config["use_custom_all_reduce"])
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_bert.named_parameters())
# Forward
input_ids = tensorrt_llm.Tensor(
name='input_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([('batch_size', [bs_range]),
('input_len', [inlen_range])]),
)
input_lengths = tensorrt_llm.Tensor(name='input_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('batch_size', [bs_range])
]))
hidden_states = tensorrt_llm_bert(input_ids=input_ids,
input_lengths=input_lengths)
# Mark outputs
hidden_states_dtype = str_dtype_to_trt(args.dtype)
hidden_states.mark_output('hidden_states', hidden_states_dtype)
# Network -> Engine
start = time.time()
engine = builder.build_engine(network, builder_config)
assert engine is not None, f'Failed to build engine for rank {runtime_rank}'
build_time = round(time.time() - start, 2)
if args.output_dir is not None:
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
serialize_path = os.path.join(args.output_dir, engine_name)
serialize_engine(engine, serialize_path)
if runtime_rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder_config.plugin_config = network.plugin_config
builder.save_config(builder_config, config_path)
return engine, build_time
def enc_dec_build_helper(component, config, args):
# More parameters
if args.serial_build and args.rank is not None and args.world_size is not None:
runtime_rank = args.rank
world_size = args.world_size
else:
runtime_rank = tensorrt_llm.mpi_rank()
world_size = tensorrt_llm.mpi_world_size()
if not args.serial_build:
torch.cuda.set_device(runtime_rank)
family = get_model_family(args.model)
logits_dtype = 'float32'
n_mels = 0
if family == 'bart':
q_scaling = 1.0
has_attention_qkvo_bias = True
has_mlp_bias = True
has_model_final_layernorm = False
has_position_embedding = True
has_embedding_layernorm = True
layernorm_type = LayerNormType.LayerNorm
relative_attention = False
layernorm_position = LayerNormPositionType.pre_layernorm if config.get(
'normalize_before', True) else LayerNormPositionType.post_layernorm
rescale_before_lm_head = False
elif family == 'whisper':
q_scaling = 1.0
has_position_embedding = True
relative_attention = False
has_embedding_layernorm = False
has_attention_qkvo_bias = True
has_mlp_bias = True
has_model_final_layernorm = True
layernorm_position = LayerNormPositionType.pre_layernorm
layernorm_type = LayerNormType.LayerNorm
rescale_before_lm_head = False
logits_dtype = str_dtype_to_trt(args.dtype)
n_mels = config['n_mels']
else:
q_scaling = 1 / config['head_size']**.5
has_attention_qkvo_bias = False