forked from ja-vazquez/FCDM_Latex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Cosine_10_Mar_16.tex
835 lines (721 loc) · 56.4 KB
/
Cosine_10_Mar_16.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
\documentclass[11pt,a4paper]{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx,psfrag,color}
\usepackage{subfigure}
\usepackage{hyperref}
\usepackage[usenames,dvipsnames,svgnames,table]{xcolor}
\usepackage{enumerate}
\setlength{\textwidth}{425pt}
\setlength{\textwidth}{475pt}
\setlength{\textheight}{595pt}
\setlength{\topmargin}{-1.1cm}
\setlength{\textheight}{655pt}
\setlength{\oddsidemargin}{-14pt}
\linespread{1.1}
\usepackage[left=2cm,top=2.5cm,right=2cm,bottom=2cm]{geometry}
\def \be {\begin{equation}}
\def \ee {\end{equation}}
\def \ba {\begin{eqnarray}}
\def \ea {\end{eqnarray}}
\def \nn {\nonumber}
\def \lam {\Lambda}
\def\rhoc{\rho_{0{\rm c}}}
\def \om {\Omega}
\def \omx {\Omega_{0X}}
\def \omms {\Omega_m}
\def \omb {\Omega_b}
\def \omk {\Omega_k}
\def \omr {\Omega_r}
\def \omm {\Omega_{0 {\rm m}}}
\def \oml {\Omega_{\Lambda 0}}
\def\omc {\Omega_{\kappa}}
\def \rb {\bar{r}}
\def \sb {\bar{s}}
\def \qb {\bar{q}}
\def \red{\textcolor{red}}
\def \jav {\textcolor{red}{\bf JAV: }}
\begin{document}
\def\thefootnote{\fnsymbol{footnote}}
\begin{center}
\Large{\textbf{Why is $\Lambda$CDM model very successful?}} \\[0.5cm]
\large{\"{O}zg\"{u}r Akarsu$^{\rm a}$, Tekin Dereli$^{\rm a}$, Suresh Kumar$^{\rm b}$, J. Alberto V\'{a}zquez$^{\rm c}$}
\\[0.5cm]
\small{
\textit{$^{\rm a}$ Department of Physics, Ko\c{c} University, 34450 Sar{\i}yer, {\.I}stanbul, Turkey}}
\vspace{.2cm}
\small{
\textit{$^{\rm b}$ Department of Mathematics, BITS-Pilani, Pilani Campus, Rajasthan-333031, India.}}
\vspace{.2cm}
\small{
\textit{$^{\rm c}$ Brookhaven National Laboratory (BNL), Department of Physics, Upton, NY 11973-5000, USA}}
\end{center}
%
%
%\vspace{.6cm}
%\hrule \vspace{0.3cm}
\noindent \small{\textbf{Abstract}\\
We have investigated....}
\\
\noindent
\hrule
\noindent \small{\\
\textbf{Keywords:} Cosmological parameters $\cdot$ Accelerated expansion $\cdot$ Dark Energy $\cdot$ $\Lambda$CDM }
\def\thefootnote{\arabic{footnote}}
\setcounter{footnote}{0}
\let\thefootnote\relax\footnote{\textbf{E-Mail:} oakarsu@ku.edu.tr, tdereli@ku.edu.tr, suresh.kumar@pilani.bits-pilani.ac.in, jvazquez@bnl.gov}
\def\thefootnote{\arabic{footnote}}
\setcounter{footnote}{0}
%\section*{Model 1}
%\label{sec:intro}
%The expansion history of the first model is
%\begin{equation}
%\label{eqn:Hzfull}\nonumber
%H(z)=H_{0}\sqrt{\Omega_{\rm r0}\left(1+z\right)^{4}+\Omega_{\rm bc0}\left(1+z\right)^{3}+\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}+\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}+\Omega_{Z0}\left(1+z\right)^{-3}+\Omega_{\Lambda 0}},
%\end{equation}
%where
%\begin{eqnarray}\nonumber
%\label{HZcsina}
%&&\Omega_{{\rm bc}0}=\frac{1}{81}\sin^{4}\left(\frac{k}{2}\right)\left[3\cot\left(\frac{k}{2}\right)+2n\right]^4,\\
%\nonumber
%&&\Omega_{X0}=-\frac{8n}{81}\sin^{4}\left(\frac{k}{2}\right)\left[3\cot\left(\frac{k}{2}\right)+2n\right]^3,\\
%\nonumber
%&&\Omega_{Y0}=-\frac{8n}{81}\sin^{4}\left(\frac{k}{2}\right)\left[3\cot\left(\frac{k}{2}\right)+2n\right] (9+4n^2),\\
%\nonumber
%&&\Omega_{Z0}=\frac{1}{81}\sin^{4}\left(\frac{k}{2}\right)(9+4n^2)^2,\\\nonumber
%&&\Omega_{\Lambda 0}=1-\Omega_{{\rm r}0}-\Omega_{{\rm bc}0}-\Omega_{{\rm X}0}-\Omega_{{\rm Y}0}-\Omega_{{\rm Z}0}.
%\end{eqnarray}
%
%With hard coded value of $\Omega_{{\rm r}0}$ in the code, the parameters to be constrained are $H_0$, $n$ and $k$.
%
%\section*{Model 2}
%The expansion history of the second model is
%\begin{equation}
% \label{eqn:Hzfull}\nonumber
%H(z)=H_{0}\sqrt{\Omega_{\rm r0}\left(1+z\right)^{4}+\Omega_{\rm bc0}\left(1+z\right)^{3}+(1-\sqrt{\Omega_{bc0}})^2(1+z)^{-3}+\Omega_{\Lambda 0}},
%\end{equation}
%where
%\[\Omega_{\Lambda 0}=1-\Omega_{{\rm r}0}-\Omega_{{\rm bc}0}-(1-\sqrt{\Omega_{bc0}})^2\]
%Here $\Omega_{{\rm bc}0}=\Omega_{{\rm b}0}+\Omega_{{\rm c}0}$. The parameters to be constrained are $\Omega_{{\rm b}0}$, $\Omega_{{\rm c}0}$ and $H_0$.
%\section*{Model 3}
%The expansion history of the third model is
%\begin{equation}
% \label{eqn:Hzfull}\nonumber
%H(z)=H_{0}\sqrt{\Omega_{\rm r0}\left(1+z\right)^{4}+\Omega_{\rm bc0}\left(1+z\right)^{3}+(1-\sqrt{\Omega_{bc0}})^2(1+z)^{-\alpha}+\Omega_{\Lambda 0}},
%\end{equation}
%where
%\[\Omega_{\Lambda 0}=1-\Omega_{{\rm r}0}-\Omega_{{\rm bc}0}-(1-\sqrt{\Omega_{bc0}})^2\]
%Here $\Omega_{{\rm bc}0}=\Omega_{{\rm b}0}+\Omega_{{\rm c}0}$. The parameters to be constrained are $\Omega_{{\rm b}0}$, $\Omega_{{\rm c}0}$, $\alpha$ and $H_0$.
\section{Sinusoidal law for deceleration parameter}
\label{sec:cosine_law}
In physics, approximations using a first few terms of a Taylor series or a Frourier series can make otherwise unsolvable problems possible for a restricted domain and can be used for as good approximations if sufficiently many terms are included. Using Fourier series general functions may be represented or approximated by sums of simpler trigonometric functions. In practice one wants to approximate the function with a finite number of terms, let's say with a Taylor polynomial or a partial sum of the trigonometric series, respectively. Approximations using the first few terms of a Taylor series can make otherwise unsolvable problems possible for a restricted domain; this approach is often used in physics. The partial sums (the Taylor polynomials) of the series can be used as approximations of the entire function. These approximations are good if sufficiently many terms are included. In the case of the Taylor series the error is very small in a neighborhood of the point where it is computed, while it may be very large at a distant point. In the case of the Fourier series the error is distributed along the domain of the function. Let us start by giving the dimensionless deceleration parameter using the formal expression of the Fourier series:
\begin{equation}
q(t)=-\frac{\ddot{a}a}{{\dot{a}}^2}=\frac{A_{0}}{2}+\sum_{i=1}^{\infty} A_{i}\cos\left(\frac{i\pi}{L}t\right)+\sum_{i=1}^{\infty} B_{i}\sin\left(\frac{i \pi}{L}t\right),
\end{equation}
where $a$ is the scale factor, $\{A_0,A_{1},..., \}$ and $\{B_0,B_{1},..., \}$ are sequences of real numbers. When only the first term of the expansion is considered it can describe the evolution of the universe in general relativity in the presence of single source with a constant EoS parameter. In this study we consider first two terms of the series and hence with
\begin{equation}\label{eqn:DP}
q=l+m \cos{\left(k\frac{t}{t_{0}}\right)}+n \sin{\left(k\frac{t}{t_{0}}\right)}
\end{equation}
where $t_{0}$ is the present age of the universe. Here $0\leq k< \pi$ is a constant and $l$ is the central value while $m>0$ and $n$ the constants determine the amplitudes of the correction terms $\cos$ and $\sin$ terms respectively. We shall also discuss the physically reasonable range range for $n$, below, when we obtain the physical ingredient of the universe in this model. We consider the de Sitter universe, which yields deceleration parameter equal to $-1$, as our base and hence choose $l=-1$. This choice gives us opportunity to solve $q$ for the scale factor $a$ explicitly. We should here note that the particular choice $k=0$ would result in $q=-1+m$ which corresponds to the power-law expansion as $a\propto t^{\frac{1}{m}}$, and hence in fact our parametrization covers also constant deceleration parameter solutions. The explicit solution of the parametrization given in \eqref{eqn:DP} for arbitrary values of $k$ under the assumption $a(t=0)=0$ gives the following:
\begin{eqnarray}\label{CSSF}
a(t)=a_{1}\left[m+n \tan\left(\frac{kt}{2t_{0}}\right)\right]^{-\frac{1}{m}}\, {\tan\left(\frac{kt}{2t_{0}}\right)}^{\frac{1}{m}}
\end{eqnarray}
where $a_{1}$ is an integration constant, yielding the following Hubble parameter
\begin{equation}
\label{HPCSLDP}
H=\frac{\dot{a}}{a}=\frac{k \csc ^2\left(\frac{k t}{2 t_0}\right)}{2t_0\left[ m \cot \left(\frac{k t}{2 t_0}\right)+ n \right]}.
\end{equation}
Let us now give the energy density $\rho_{\rm T}$ and pressure $p_{\rm T}$ of the corresponding total energy-momentum tensor for these kinematics using GR in the framework of spatially flat RW space-time:
\begin{equation}
\rho_{\rm T}=3H^2=\frac{3k ^2\csc ^4\left(\frac{k t}{2 t_0}\right)}{4t_0^2\left[ m \cot \left(\frac{k t}{2 t_0}\right)+ n \right]^2},
\end{equation}
\begin{equation}
p_{\rm T}=-(2\dot{H}+3H^2)=\frac{k ^2\csc ^4\left(\frac{k t}{2 t_0}\right)\left[-3+2m\cos\left(k\frac{t}{t_0}\right)+2n\sin\left(k\frac{t}{t_0}\right)\right]}
{4t_0^2\left[ m \cot \left(\frac{k t}{2 t_0}\right)+ n \right]^2}.
\end{equation}
The corresponding EoS parameter, on the other hand, reads as
\begin{equation}
w_{\rm T}=\frac{p_{\rm T}}{\rho_{\rm T}}=-1+\frac{2}{3}\left[m\cos\left(k\frac{t}{t_0}\right)+n\sin\left(k\frac{t}{t_0}\right)\right].
\end{equation}
Substituting the scale factor \eqref{CSSF} of the model into $a=1/(1+z)$ and solving for $t$, we have
\begin{equation}
t=\frac{2t_0}{k}\arctan\left[\frac{m}{\left\{m\cot(k/2)+n\right\}(1+z)^m-n}\right].
\end{equation}
The Hubble parameter in red-shift is as follows:
\begin{equation}
\label{eqn:HzRaw}
H(z)=\frac{1}{m^2}H_0 \sin ^2\left(\frac{k}{2}\right) \left[ \left\{m \cot \left(\frac{k}{2}\right)+n\right\}^2(1+z)^m-2 n
\left\{m\cot \left(\frac{k}{2}\right)+n\right\}+(m^2+n^2)(1+z)^{-m}\right],
\end{equation}
where we set $a(t_0)=1$ and the Hubble constant $H(t_0)=H_0=\frac{k}{t_{0}m\sin(k)+t_{0}n(1-\cos(k))}$.
We note that $a\rightarrow 0$, $H\rightarrow\infty$, $q\rightarrow-1+m$ and $w_{\rm T}\rightarrow-1+\frac{2}{3}m$ as $t\rightarrow 0$. We expect from a successful cosmological model that pressure-less matter, viz. matter source with the EoS parameter $w\cong 0$, would be dominant over dark energy source at red-shift values right after the red-shift of matter-radiation equality which would have occurred at $z\sim 3400$, i.e., when the age of the universe is at order of $10^{2}$ years old. In this study we are particularly interested in the universe since then the matter domination, and hence as like $\Lambda$CDM, we expect $w\rightarrow0$ (and hence $q\rightarrow\frac{1}{2}$ relying on GR) as $t\rightarrow 0$. Accordingly, we set $m=\frac{3}{2}$ in \eqref{eqn:HzRaw} so that obtain the following $H(z)$ involving matter source obeying the relation $\Omega_{{\rm m}}\propto (1+z)^3$ explicitly:
\begin{equation}
\label{eqn:Hzfull}
H(z)=H_{0}\sqrt{\Omega_{\rm m0}\left(1+z\right)^{3}+\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}+\Omega_{\Lambda 0}+\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}+\Omega_{Z0}\left(1+z\right)^{-3}},
\end{equation}
where
\begin{eqnarray}\nonumber
\label{HZcsina}
&&\Omega_{{\rm m}0}=\frac{1}{81}\sin^{4}\left(\frac{k}{2}\right)\left[3\cot\left(\frac{k}{2}\right)+2n\right]^4,\\
\nonumber
&&\Omega_{X0}=-\frac{8n}{81}\sin^{4}\left(\frac{k}{2}\right)\left[3\cot\left(\frac{k}{2}\right)+2n\right]^3,\\
\nonumber
&&\Omega_{\Lambda 0}=\frac{2}{27}\sin^{4}\left(\frac{k}{2}\right)\left[3\cot\left(\frac{k}{2}\right)+2n\right]^2(3+4n^2),\\
\nonumber
&&\Omega_{Y0}=-\frac{8n}{81}\sin^{4}\left(\frac{k}{2}\right)\left[3\cot\left(\frac{k}{2}\right)+2n\right] (9+4n^2),\\
\nonumber
&&\Omega_{Z0}=\frac{1}{81}\sin^{4}\left(\frac{k}{2}\right)(9+4n^2)^2,
\end{eqnarray}
which are the density parameters of the effective components at the present age of the universe, i.e. at $z=0$, and satisfy $\Omega_{{\rm m}0}+\Omega_{\Lambda 0}+\Omega_{X0}+\Omega_{Y0}+\Omega_{Z0}=1$. Assuming each $\Omega$ represent a distinct energy source interacting minimally with others, then due to the relation $\rho\propto (1+z)^{3(1+w)}$, corresponding EoS parameters would be as follows: $w_{m}=0$, $w_{X}=-\frac{1}{2}$, $w_{\Lambda}=-1$, $w_{Y}=-\frac{3}{2}$ and $w_{Z}=-2$. We note that $\Omega_{{\rm m}}=\Omega_{{\rm m}0}(1+z)^{3}$ stands for matter source and consider the remaining part as the dark energy source:
\begin{equation}
\Omega_{\rm DE}=\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}+\Omega_{\Lambda 0}+\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}+\Omega_{Z0}\left(1+z\right)^{-3},
\end{equation}
and hence
\begin{equation}
\Omega_{{\rm DE}0}=1-\Omega_{{\rm m}0}=\Omega_{X0}+\Omega_{\Lambda 0}+\Omega_{Y0}+\Omega_{Z0}.
\end{equation}
We started with a deceleration parameter oscillating and eventually ended up with a model that given by $H(z)$ consists of several density parameters in the power-law form. However, it is important to note that each density parameter is not a new free parameter; two parameter $k$ and $n$ determines all five density parameters at once. We note that $\Omega_{\rm DE}$ is consist of a constant term $\Omega_{\Lambda 0}$, which obviously stands as the cosmological constant, and three other terms $\Omega_{X0}$, $\Omega_{Y0}$ and $\Omega_{Z0}$. We note that being $0\leq k < \pi$ the parameter should satisfy the condition $-\frac{3}{2}\cot\left(\frac{k}{2}\right)<n\leq 0$, unless otherwise the energy density of the DE source would get negative values at some point in the expansion history of the universe. However, negative value of DE density could be quite useful as illustrated in the next section.
Using the Hubble parameter \eqref{eqn:Hzfull}, the evolution of the deceleration parameter can be written as follows:
\begin{equation}
q=\frac{{\rm d}z}{{\rm d}t}\frac{{\rm d}}{{\rm d}z}\left(\frac{1}{H}\right)-1=\frac{\frac{1}{2}\Omega_{\rm m0}\left(1+z\right)^{3}-\frac{1}{4}\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}-\Omega_{\Lambda}-\frac{7}{4}\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}-\frac{5}{2}\Omega_{Z0}\left(1+z\right)^{-3}}{\Omega_{\rm m0}\left(1+z\right)^{3}+\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}+\Omega_{\Lambda}+\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}+\Omega_{Z0}\left(1+z\right)^{-3}},
\end{equation}
which gives
\begin{equation}
q_0\equiv q(z=0)=\frac{1}{2}\Omega_{\rm m0}-\frac{1}{4}\Omega_{X0}-\Omega_{\Lambda}-\frac{7}{4}\Omega_{Y0}-\frac{5}{2}\Omega_{Z0}
\end{equation}
for the present universe $q_{0}$.
EoS parameter of the DE source is as follows:
\begin{equation}
w_{\rm DE}=-1+\frac{\frac{1}{2}\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}-\frac{1}{2}\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}-\Omega_{Z0}\left(1+z\right)^{-3}}{\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}+\Omega_{\Lambda}+\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}+\Omega_{Z0}\left(1+z\right)^{-3}}.
\end{equation}
\pagebreak
\section{Observational constraints and comparison with $\Lambda$CDM model}\label{sec3}
We explore the parameter space of SLDP model by making use of a modified version of a simple and fast Markov
Chain Monte Carlo (MCMC) code, named SimpleMC. This code contains a compressed version of the Planck data, a recent reanalysis of Type Ia supernova
(SN) data, and high-precision BAO measurements at different redshifts up to $z < 2.36$ \cite{aub14}. It computes the expansion rates and distances from the Friedmann equation. Table \ref{tab:results} displays the constraints on the parameters of SLDP model from Planck+SN+BAO data with 68\% and 95\% confidence intervals (C.I.). On the other hand, Figure \ref{fig1} shows the one-dimensional marginalized distribution, and two-dimensional 68\% and 95\% confidence contours for the parameters of the SLDP model.
\begin{table}[h]
\caption{Observational constraints on the parameters of SLDP model from Planck+SN+BAO data.}
\begin{center}
\begin{tabular}{cccc}
\hline\hline Parameter&Mean value&68\% C.I.&95\%C.I.\\ \hline \\
$H_0$ & $ 67.48$& $[66.15,68.64]$&$[65.24,69.91]$ \\[8pt]
$n$& $-0.4059$&$[-0.5500, -0.1669]$&$[-0.7441, -0.1255]$ \\[8pt]
$k$&$1.0428$ &$[0.8289,1.2275]$&$[0.7398, 1.3296]$ \\[8pt]
\hline\hline
\end{tabular}
\label{tab:results}
\end{center}
\end{table}
\begin{figure}[htb!]\centering
\includegraphics[width=13cm]{Fig1.pdf}
\caption{\footnotesize{One-dimensional marginalized distribution, and two-dimensional 68\% and 95\% confidence contours for the parameters of the SLDP model. }}
\label{fig1}
\end{figure}
\begin{table}[htb!]\centering\small
\caption{\footnotesize{Mean values with 68\% C.I. of some important cosmological parameters related to SLDP and $\Lambda$CDM models. In the fourth column, a schematic overlapping of C.I. is shown where Blue color rectangles correspond to SDPL model, and Red color rectangles pertain to the $\Lambda$CDM model.}}
\begin{tabular}{lcccc}
\hline\hline Parameter & SLDP model & $\Lambda$CDM model&Overlapping of C.I.\\ \hline\hline\\
$H_0$ (${\rm km/s/Mpc}$) & $67.48\;[66.15,68.64]$& $68.20\;[67.56,68.84]$& \begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{hz1.pdf}
\end{minipage}\\[8pt]
$\Omega_{\rm m0}$ & $0.288\;[0.274,0.301]$ &$0.302\;[0.294,0.310]$& \begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_om0.pdf}
\end{minipage}\\[8pt]
$w_{\rm DE0}$ & $ -1.025\;[-1.107,-0.942]$ & $ -1$&\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_wde.pdf}
\end{minipage}\\[8pt]
$w_{\rm eff0}$ & $ -0.730\;[-0.791,-0.669]$ & $ -0.798\;[-0.706,-0.690]$&\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_weff.pdf}
\end{minipage}\\[8pt]
$q_0$ & $-0.595\;[-0.687,-0.503]$ &$-0.547\; [-0.559,-0.536]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_q.pdf}
\end{minipage}\\[8pt]
$j_{0}$ & $1.755\;[1.428,2.081]$ &1 &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_j.pdf}
\end{minipage} \\[8pt]
$z_{\rm tr}$ & $0.58\;[0.54,0.62]$ & $0.67\;[0.64,0.69]$& \begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_ztr.pdf}
\end{minipage} \\[8pt]
$t_{\rm tr}$ (Gyr) & $8.04\;[7.82,8.30]$ & $7.53\;[7.41,7.66]$&\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_ttr.pdf}
\end{minipage} \\[8pt]
$t_0 $ (Gyr)& $13.81\;[13.68,13.94]$ & $13.80\; [13.76,13.83]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_t0.pdf}
\end{minipage} \\[8pt]
$z_{\rm dS}$ & $-0.21\;[-0.27,-0.15]$ & $-1$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_zds.pdf}
\end{minipage} \\[8pt]
$t_{\rm dS}$ (Gyr) & $17.30\; [16.26,18.52]$ & $\infty$& \\[8pt]
$t_{\rm BR} $ (Gyr)& $34.60\;[ 32.19,37.02]$ & No Big Rip& \\[8pt]
\hline
$\chi^2_{min}$ & $--$& $--$& \\[8pt]
$\chi^2_{min}$/dof & $--$& $--$& \\[8pt]
\hline\hline
\end{tabular}
\label{table:BRLCDM}
\end{table}
In Table 2, we display the mean values with 68\% C.I. of some important cosmological parameters related to SLDP and $\Lambda$CDM models. In the fourth column, a schematic overlapping of C.I. is shown where Blue color rectangles correspond to SDPL model, and Red color rectangles pertain to the $\Lambda$CDM model. The representation of C.I. through color-filled rectangles is useful to compare the predictions of the two models, and seems quit efficient to visualize the results. We notice that the C.I. of the parameter $H_0$ corresponding to the SLDP and $\Lambda$ models overlap (see the overlapping of the Blue and Red rectangles). It means the two models are consistent in a common range with regard to the prediction of $H_0$ in the light of Planck+SN+BAO data. Likewise, we see that the two models agree with the predictions of the parameters $\Omega_{\rm m0}$, $w_{\rm DE0}$, $w_{\rm eff0}$ and $q_0$, but differ in case of $j_0$. The two models exhibit the difference in the predictions of transition redshift $z_{\rm tr}$ and transition time $t_{\rm tr}$, but interestingly both agree with the age of the Universe in a common range. Next, we observe that the SLDP model exhibits de Sitter phase in a finite time, but the $\Lambda$CDM does so asymptotically after infinite time. Likewise the SLDP Universe has a finite lifetime, and ends with a Big-Rip contrary to the non-stop eternal expansion of the $\Lambda$CDM Universe. In Figures 2 and 3, we display the evolution of the parameters $w_{\rm DE}$, $w_{\rm eff}$, $j$ and $q$ vs $z$ for the SLDP and $\Lambda$CDM models. It is evident that the SLDP model behaves similar to the $\Lambda$CDM model till the present epoch $z=0$, but the two models differ significantly in future.
\begin{figure}[htb!]\centering
\includegraphics[width=8.3cm]{Fig5a.pdf}
\includegraphics[width=8.3cm]{Fig5b.pdf}
\caption{\footnotesize{Left Panel: Plot of $w_{DE}(z)$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP model. The horizontal red line stands for $w_\Lambda=-1$, the EoS parameter of dark energy in the $\Lambda$CDM model. Right Panel: Plots of $w_{eff}(z)$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP (Gray color) and $\Lambda$CDM (Red color) models.}}
\label{fig:5}
\end{figure}
\begin{figure}[htb!]\centering
\includegraphics[width=8.3cm]{Fig6a.pdf}
\includegraphics[width=8.3cm]{Fig6b.pdf}
\caption{\footnotesize{Left Panel: Plots of $q(z)$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP (Gray color) and $\Lambda$CDM (Red color) models. Right Panel: Plot of $j(z)$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP model. The horizontal red line stands for $j_\Lambda=1$, the jerk parameter in the $\Lambda$CDM model. }}
\label{fig:5}
\end{figure}
\pagebreak
$\;$
\pagebreak
\subsection{Comparing the dark energies}
In $\Lambda$CDM model the cosmological constant $\Lambda$ is the sole source of dark energy, but this is not the case in the SLDP model. In Table 4 and the adjacent pie chart, we show the contributions of various components to the overall dark energy of the SLDP model. We see that only about 45 percent of dark energy of the SLDP Universe is in the form of $\Lambda$ term. Though the SLDP model behaves like $\Lambda$CDM model up to the present Universe, but the contribution to dark energy from the cosmological constant differ substantially in the two models. So the SLDP model is a good example for models where dark energy source is something quite different than cosmological constant, but can present a similar behaviour with $\Lambda$CDM for a long enough time.
\begin{table}[h]
\caption{\footnotesize{Dark energy components in SLDP model.}}
\centering
\parbox{0.4\textwidth}{
\begin{footnotesize}
\begin{tabular}{cccc}
\hline\hline Component&EoS &Mean value&68\% C.I.\\ \hline \\
$\Omega_{X0}$&$-1/2$ & $ 0.211$& $[0.149,0.274]$\\[8pt]
$\Omega_{\Lambda 0}$&$-1$& $0.325$&$[0.285,0. 364]$ \\[8pt]
$\Omega_{Y0}$&$-3/2$&$0.105$ &$[0.095,0.115]$ \\[8pt]
$\Omega_{Z0}$&$-2$&$0.070$ &$[0.039,0.102]$ \\[8pt]
\hline\hline
\end{tabular}
\end{footnotesize}
}
\qquad
\begin{minipage}[c]{0.43\textwidth}%
\centering
\includegraphics[width=1\textwidth]{pie_plot_de.pdf}
\label{fig:figure}
\end{minipage}
\end{table}
\pagebreak
\subsection{Checking for the BAO measurements}
Baryon acoustic oscillations (BAO) in the pre-recombination
epoch exhibit the peak in the matter correlation function. The BAO peak at a redshift $z$ is observed at an angular separation $r_d /[(1 + z)D_A (z)]$ and at a redshift separation
$r_d /D_H (z)$, where $r_d$ is the sound horizon at the drag
epoch, and $D_A$ and $D_H = c/H$ are the angular
and Hubble distances, respectively. Thus, the peak position measurement at any redshift puts
constraints on the combinations of cosmological parameters that determine $D_H /r_d$ and $D_A /r_d$ \cite{delubac15}. In order to analyze SLDP model in contrast with $\Lambda$CDM model with regard to BAO measurements, we shall utilize the observed measurements of $D_V/r_d$, $D_M/r_d$ and $D_H/r_d$ collected in Table II of Ref. \cite{aub14}. Note that $D_M/r_d$ and $D_A/r_d$ differ by a factor $(1+z)$. For details of various definitions and observed data points, one may refer to \cite{aub14} and references therein.
Using Eq. (16) of Ref. \cite{aub14}, we find $r_d=150.128\pm1.358$ Mpc for the SLDP model, and $r_d=147.564\pm0.346$ Mpc for the $\Lambda$CDM model considering the constraints on the two models from Planck+SN+BAO data. In Figure 4, we show the plots of various distance curves for the SLDP and $\Lambda$CDM models considering the mean values of the parameters (See caption of the figure for more details). Both the models appear to have similar behavior with regard to the observed BAO measurements.
\begin{figure}[h]\centering
\includegraphics[width=8.3cm]{dh_rd.pdf}
\includegraphics[width=8.3cm]{dm_rd.pdf}
\includegraphics[width=8.3cm]{dv_rd.pdf}
\caption{\footnotesize{Plots of $zD_H(z)/r_d\sqrt{z}$, $D_M(z)/r_d\sqrt{z}$ and $D_V(z)/r_d\sqrt{z}$ curves vs $z$ with logarithmic scale on horizontal axis in the redshift range from 0 to 1100. In each panel, the Blue curve corresponds to the SLDP model while the Red one stands for the $\Lambda$CDM model. The error bars in the upper left panel correspond to BOSS CMASS sample ($z=0.57$), LyaF auto-correlation ($z=2.34$) and LyaF-QSO cross correlation ($z=2.36$) measurements of $D_H/r_d$; the error bars in the right upper panel correspond to BOSS CMASS sample ($z=0.57$), LyaF auto-correlation ($z=2.34$) and LyaF-QSO cross correlation ($z=2.36$) measurements of $D_M/r_d$, and the error bars in the lower panel correspond to 6dFGS ($z=0.106$), MGS ($z=0.15$) and BOSS LOWZ Sample ($z=0.32$) measurements of $D_V/r_d$, as displayed in Table 4. In each panel, the inset figures display the behavior of the curves more clearly with regard to the observed data points, without logarithmic scale on the horizontal axis.}}
\label{fig:5}
\end{figure}
In order to quantify the behavior minutely, we present mean values with 68\% C.I. of observed BAO measurements at various redshifts along with the related predictions by SLDP and $\Lambda$CDM models. In the fifth column, a schematic overlapping of C.I. is shown where Purple color rectangles stand for the observed BAO measurements, Blue color rectangles correspond to SLDP model, and Red color rectangles pertain to the $\Lambda$CDM model. For the $D_H/r_d$ measurements, we notice that the SLDP model agrees with the observed data point at $z=0.57$ (Purple and Blue rectangles overlap) while $\Lambda$CDM model does not agree with this point (the Red rectangle does not overlap with the Purple one). On the other hand, both the models fail to satisfy the observed range of $D_H/r_d$ at $z=2.34$ and $z=2.36$. In $D_M/r_d$ measurements, the $\Lambda$CDM model agrees with the observed range of $D_M/r_d(z=0.57)$, but SLDP model does not agree with a narrow margin. Both the models completely agree with the observed range of $D_M/r_d(z=2.34)$, but fail to predict the observed range of $D_M/r_d(z=2.34)$. In $D_V/r_d$ measurements, the two models show complete agreement with the observed ranges of $D_V/r_d(z=0.106)$ and $D_V/r_d(z=0.32)$ while showing a slight disagreement with observed range of $D_V/r_d(z=0.15)$.
\begin{table}[htb!]\centering\small
\caption{\footnotesize{Mean values with 68\% C.I. of observed BAO measurements at various redshifts along with the related predictions by SLDP and $\Lambda$CDM models. In the fifth column, a schematic overlapping of C.I. is shown where Purple color rectangles stand for the observed BAO measurements, Blue color rectangles correspond to SLDP model, and Red color rectangles pertain to the $\Lambda$CDM model}}
\begin{tabular}{lccccc}
\hline\hline $D(z)/r_d$&Observed & SLDP model & $\Lambda$CDM model&Overlapping of C.I.\\ \hline\hline\\
$D_H/r_d(z=0.57)$ & $20.75\;[20.02,21.48]$& $21.32\;[21.07,21.58]$&$21.80\;[21.72,21.88]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_dh57.pdf}
\end{minipage}\\[8pt]
$D_H/r_d(z=2.34)$ & $9.18\;[8.90,9.46]$& $8.42\;[8.31,8.53]$&$8.61\;[8.58,8.65]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_dh234.pdf}
\end{minipage}\\[8pt]
$D_H/r_d(z=2.36)$ & $9.00\;[8.70,9.30]$& $8.35\;[8.24,8.46]$&$8.54\;[8.51,8.57]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_dh236.pdf}
\end{minipage}\\[8pt]
\hline\\
$D_M/r_d(z=0.57)$ & $14.945\;[14.735,15.155]$& $14.526\;[14.389,14.663]$&$14.685\;[14.590,14.779]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_dm57.pdf}
\end{minipage}\\[8pt]
$D_M/r_d(z=2.34)$ & $37.675\;[35.504,39.846]$& $38.274\;[37.887,38.660]$&$39.116\;[39.004,39.229]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_dm234.pdf}
\end{minipage}\\[8pt]
$D_M/r_d(z=2.36)$ & $36.288\;[34.944,37.632]$& $38.441\;[38.053,38.829]$&$39.288\;[39.175,39.400]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_dm236.pdf}
\end{minipage}\\[8pt]
\hline\\
$D_V/r_d(z=0.106)$ & $3.047\;[2.910,3.184]$& $3.038\;[3.018,3.059]$&$3.054\;[3.046,3.062]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_dv106.pdf}
\end{minipage}\\[8pt]
$D_V/r_d(z=0.15)$ & $4.480\;[4.282,4.678]$& $4.236\;[4.204,4.268]$&$4.259\;[4.248,4.270]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_dv15.pdf}
\end{minipage}\\[8pt]
$D_V/r_d(z=0.32)$ & $8.467\;[8.300,8.634]$& $8.488\;[8.382,8.593]$&$8.560\;[8.543,8.576]$ &\begin{minipage}{3cm}
\includegraphics[width=3cm, height=0.5cm]{oci_dv32.pdf}
\end{minipage}\\[8pt]
\hline\hline
\end{tabular}
\label{table:BRLCDM}
\end{table}
\section{Concluding Remarks}
Considering Fourier series approximation of deceleration parameter, in this paper, we have shown that the SLDP model explains the background evolution of the Universe from the matter dominated epoch to the present dark energy dominated epoch just like the $\Lambda$CDM model. We notice that SLDP model does slightly better than the LCDM model with regard to the BOSS measurements. It appears that consideration of more terms in the Fourier series approximation of deceleration parameter would relieve the tension between different observational probes. However, consideration of more terms offers difficulty in analytical solution of the model. Next, in the SLDP model we find that the future evolution of the Universe is entirely different from the one in LCDM model. For, in the SLDP model the Universe ends in Big Rip in finite time contrary to the de Sitter phase of the Universe in LCDM. It may be noted that the SLDP model is independent of any theory of gravity.
%We observe larger error region in the SLDP model in redshift range around 1 to 10. It appears that it happens because of the effective contribution from the sine term in equation (2) during this phase of evolution of the Universe.
\section{SLDP from Tree Level String Action}
We consider gravi-dilaton string effective action in $(1+3+n)$-dimensions written in the {\sl string frame}:
\begin{equation}
\label{eqn:action}
I = \int_{\mathcal{M}} {\rm d}^{1+3+n}x \sqrt{|g|} e^{-2 \varphi} \left \{ \mathcal{R}+2\Lambda+ 4\; \partial_{\mu} \varphi \partial^{\mu} \varphi \right \},
\end{equation}
where $\mathcal{R}$ is the scalar curvature of the space-time metric $g$, $\varphi$ is the dilaton field and $\Lambda$ is the central charge.
We consider a spatially homogeneous but not necessarily isotropic $(1+3+n)$-dimensional synchronous space-time metric that involves a maximally symmetric three dimensional flat external space metric and a compact $n$-dimensional flat internal space metric:
\begin{equation}
\label{eqn:HDmetric}
{\rm d}s^2 = -{\rm d}t^2 + a^2(t) \left ( {\rm d}x^2 + {\rm d}y^2 +{\rm d}z^2 \right ) + s^2(t)
\left ( {\rm d}\theta_{1}^{2} +...+ {\rm d}\theta_{n}^{2}\right ).
\end{equation}
Here $t$ is the cosmic time variable, $(x,y,z)$ are the Cartesian coordinates of the 3-dimensional flat space that represents the space we observe today, and $(\theta_1, ...,\theta_n)$ are the coordinates of the $n$-dimensional, compact (toroidal) internal space that represents the space that cannot be observed directly and locally today. The scale factors $a(t)$ of the 3-dimensional external space and $s(t)$ of the $n$-dimensional internal space are functions of $t$ only.
We shall consider the higher dimensional steady state universe condition, which has been proposed in a recent study \cite{AkarsuDereli12HDSS}. Accordingly, we define a higher dimensional steady-state universe with two properties: (i) the higher dimensional universe has a constant volume as a whole but the internal and external spaces are dynamical, (ii) the energy density is constant in the higher dimensional universe. However in this study, we do not introduce any matter source in higher dimensions and hence it is enough if we consider only the first one of these properties. Accordingly, we assume that the volume scale factor of the higher dimensional universe, i.e. the $(3+n)$-dimensional volume, is constant:
\begin{equation}
\label{eqn:constvol}
V=a^{3}s^{n}=V_{0}.
\end{equation}
$V_{0}$ is a positive real constant.
Eventually we arrive at the following set of equations:
\begin{equation}
\label{eqn:12b}
\frac{3}{2}\left(\frac{1}{n}+1\right)\frac{{\dot{a}}^2}{a^2}+\frac{3}{n}\frac{\ddot{a}}{a}-2\ddot{\varphi}+2{\dot{\varphi}}^2-\frac{6}{n}{\dot{\varphi}}\frac{\dot{a}}{a}+\Lambda=0,
\end{equation}
\begin{equation}
\label{eqn:13b}
\frac{3}{2}\left(\frac{3}{n}+1\right)\frac{{\dot{a}}^{2}}{a^2}-2{\ddot{\varphi}} +2{\dot{\varphi}}^{2}+\Lambda = 0,
\end{equation}
\begin{equation}
\label{eqn:14b}
\left(\frac{9}{2n}+\frac{5}{2}\right)\frac{\dot{a}^{2}}{a^2}-\frac{\ddot{a}}{a}-2{\ddot{\varphi}}+2{\dot{\varphi}}^{2}+2\frac{\dot{a}}{a}{\dot{\varphi}}+\Lambda=0,
\end{equation}
\begin{equation}
\label{eqn:16b}
-\frac{3}{2}\left(\frac{3}{n}+1\right)\frac{\dot{a}^{2}}{a^2}+2{\dot{\varphi}}^{2}+\Lambda = 0.
\end{equation}
Adding \eqref{eqn:16b} and \eqref{eqn:13b} side by side we find that
\begin{equation}
{\ddot{\varphi}}-2{\dot{\varphi}}^{2}=\Lambda,
\end{equation}
which yields
\begin{equation}
\varphi=-\frac{1}{4} \ln \left( \frac{2}{\Lambda} \left[c_1 \sin(\sqrt{2\Lambda}t) - c_2 \cos(\sqrt{2\Lambda}t)\right]^2 \right).
\end{equation}
Using this we find the deceleration parameter of the external space as follows:
\begin{equation}
q_a=-1+3\sqrt{\frac{3+n}{3n}}\frac{c_1 \cos(\sqrt{2\Lambda}t)+c_2 \sin(\sqrt{2\Lambda}t)}{\sqrt{c_1^2+c_2^2}}.
\end{equation}
To set $q_a=0.5$ for $t\sim0$ we should set
\begin{equation}
c_2=-\frac{1}{3}\,{\frac {\sqrt {3}\sqrt {n \left( n+12 \right) }{c_1}}{n}},
\end{equation}
which leads to the following deceleration parameter for the external space
\begin{equation}
q_a=-1+\frac{3}{2} \cos(\sqrt{2\Lambda}t)-\frac{3}{2} \sqrt{\frac{n+12}{3n}} \sin(\sqrt{2\Lambda}t).
\end{equation}
We note the factor in front of the sine term ranges, for $n$, between $-\sqrt{3}/2$ and $-\sqrt{39}/2$, i.e., $-3.12$ and $-0.87$. For $n=6$ it is $-1.5$, for $n=22$ it is $-1.08$. WE MAY TRY SOME CONSTRAINT WORKS FOR THIS HIGHER D MODEL AND CHECK THE CHI$^2$ VALUES ETC.
THIS THEORETICAL MODEL IS DOING GREAT BUT ISSUE ABOUT THE FACTOR IN FRONT OF THE SINE TERM CAN BE INVESTIGATED AS AN SEPARATE THEORETICAL PAPER TO SEE WHAT CAN BE DONE TO MAKE IS SMALLER, E.G., SOME HIGHER ORDER CORRECTIONS OF STRING THEORY?....
\begin{thebibliography}{*}
\bibitem{delubac15}
T. Delubac et al., A\&A 574 (2015) A59 [arXiv:1404.1801v2 [astro-ph.CO]]
\bibitem{sahni14}
V. Sahni, A. Shafieloo, A. A. Starobinsky, Astrophys. J. 793 (2014) L40 [arXiv:1406.2209v3 [astro-ph.CO]]
%\bibitem{ef14}
%Efstathiou, G., MNRAS 440 (2014) 1138
%\bibitem{samushia13}
%L. Samushia et al., MNRAS 429 (2013) 1514 [arXiv:1206.5309v2 [astro-ph.CO]]
\bibitem{aub14}
E. Aubourg et al. [BOSS Collaboration], [arXiv:1411.1074 [astro-ph.CO]].
\end{thebibliography}
\end{document}
%\section{CLDP model as screened model of DE}
%In a recent study, Delubac et al.\cite{delubac15} have estimated $H(z=2.34)=222\pm7$km/s/Mpc by using 137,562 quasars in the redshift range $2.1\leq z\leq3.5$ from the Data Release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III, and reported that this value is in tension with CMB observations assuming $\Lambda$CDM scenario at around 2.5$\sigma$ level. In fact, this value of $H(z)$ is lower than the value predicted by $\Lambda$CDM model. Sahni et al. \cite{sahni14} have demonstrated that the lower value of $H(z)$ at higher redshifts can be achieved in screened models of DE, where the cosmological constant is screened by evolving DE term(s) in the past. Here, we show that the CLDP model \eqref{eqn:Hzfull} is a plausible screened model of DE.
%
%We can rewrite \eqref{eqn:Hzfull} as follows:
%\begin{equation}
%\label{eqn:Hzscreened}
%H(z)=H_{0}\sqrt{\Omega_{\rm m0}\left(1+z\right)^{3}+\Omega_{\Lambda 0}-f(z)},
%\end{equation}
%where $f(z)=-[\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}+\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}+\Omega_{Z0}\left(1+z\right)^{-3}]$ is the screening term. To illustrate the screening mechanism, we plot matter source (Black curve), cosmological constant density parameter (horizontal red line) and the screening term $f(z)$ (Green curve) are plotted vs z by choosing $k=\pi/2$ and $n=0.02$ in Fig.\ref{fig:screen}. We see that $f(z)$ (Green curve) evolves at a slower rate than the matter source (Black curve) at higher redshifts in order to preserve the matter regime. But later on, $f(z)$ (Green curve) balances the contribution of cosmological constant at the redshift where the $f(z)$ curve meets the horizontal Red line and $f(z)=\Omega_{\Lambda 0}$. Thus, $f(z)$ term screens the cosmological constant in the past.
%
%
%
%
%
%%Using the Hubble parameter \eqref{eqn:Hzfull}, the evolution of the deceleration parameter can be written as follows:
%%\begin{equation}
%%q=\frac{{\rm d}z}{{\rm d}t}\frac{{\rm d}}{{\rm d}z}\left(\frac{1}{H}\right)-1=\frac{\frac{1}{2}\Omega_{\rm m0}\left(1+z\right)^{3}-\frac{1}{4}\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}-\Omega_{\Lambda 0}-\frac{7}{4}\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}-\frac{5}{2}\Omega_{Z0}\left(1+z\right)^{-3}}{\Omega_{\rm m0}\left(1+z\right)^{3}+\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}+\Omega_{\Lambda 0}+\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}+\Omega_{Z0}\left(1+z\right)^{-3}},
%%\end{equation}
%%which gives
%%\begin{equation}
%%q_0\equiv q(z=0)=\frac{1}{2}\Omega_{\rm m0}-\frac{1}{4}\Omega_{X0}-\Omega_{\Lambda 0}-\frac{7}{4}\Omega_{Y0}-\frac{5}{2}\Omega_{Z0}
%%\end{equation}
%%for the present universe $q_{0}$.
%
%EoS parameter of the DE source is
%\begin{equation}
%w_{\rm DE}=-1+\frac{\frac{1}{2}\Omega_{X0}\left(1+z\right)^{\frac{3}{2}}-\frac{1}{2}\Omega_{Y0}\left(1+z\right)^{-\frac{3}{2}}-\Omega_{Z0}\left(1+z\right)^{-3}}{\Omega_{\Lambda 0}-f(z)}.
%\end{equation}
%Notice that $w_{\rm DE}$ has a pole when $\Omega_{\Lambda 0}=f(z)$. However, the presence of such a pole does not indicate any pathologies since $w_{\rm DE}$ is the effective EoS parameter of DE in the CLDP model under consideration \cite{sahni14}.
%
%In order to see whether the CLDP model can accommodate the expansion rates at higher redshifts given by $H(z=0.57)=92.4\pm4.5$km/s/Mpc \cite{samushia13} and $H(z=2.34)=222\pm7$km/s/Mpc \cite{delubac15}, we choose $H_0=70.6\pm3.3$km/s/Mpc, $k=\pi/2$ and $n=0.02$ to plot the evolution of $H(z)$ in the CLDP model, which is shown in Fig. \ref{fig:hzscreen} by solid blue curve. The evolution of $H(z)$ in flat $\Lambda$CDM model is also shown by dotted Black curve with $H_0=70.6\pm3.3$km/s/Mpc \cite{ef14} and $\Omega_{\rm m0}=0.28$. The left error bar (Green color) represents $H(z=0.57)=92.4\pm4.5$km/s/Mpc (left) \cite{samushia13} while the right one (Red color) stands for $H(z=2.34)=222\pm7$km/s/Mpc \cite{delubac15}. We see that the $H(z)$ curve of $\Lambda$CDM model passes through the left error bar but fails to pass through the right one, which is the tension reported in \cite{delubac15}. It is interesting to observe that the $H(z)$ curve of CLDP model passes through both the error bars, and hence it is capable of accommodating the low expansion rate at higher redshifts.
%
%%\begin{figure}[htb!]\centering
%%\includegraphics[width=8cm]{Hzvszscreen.pdf}
%%\caption{\footnotesize{Dotted Black curve: Evolution of $H(z)$ in flat $\Lambda$CDM model vs $z$ with $H_0=70.6\pm3.3$km/s/Mpc \cite{ef14} and $\Omega_{\rm m0}=0.28$. Solid Blue curve: Evolution of $H(z)$ in flat $\Lambda$CDM model vs $z$ with $H_0=70.6\pm3.3$km/s/Mpc, $k=\pi/2$ and $n=0.02$. The error bars (Red color) represent $H(z=0.57)=92.4\pm4.5$km/s/Mpc (left) \cite{samushia13} and $H(z=2.34)=222\pm7$km/s/Mpc (right) \cite{delubac15}}}
%%\label{fig:hzscreen}
%%\end{figure}
%
%
%\section{SLDP model with $n=0$}
%Choosing $n=0$, we can write\eqref{eqn:Hzfull} in the form
%\begin{equation}\label{eqn:Hzsp}
%H(z)=H_0 \sqrt{ \Omega_{m0}(1+z)^{3}+2\sqrt{ \Omega_{m0}}(1-\sqrt{\Omega_{m0}})+(1-\sqrt{\Omega_{m0}})^2(1+z)^{-3}},
%\end{equation}
%where $\sqrt{\Omega_{m0}}=\cos ^2\left(k/2\right)$.
%
%Using the Hubble parameter \eqref{eqn:Hzsp}, the evolution of the deceleration parameter can be written as follows:
%\begin{equation}
%q=-1-\frac{3}{2}\left[\frac{1-\sqrt{\Omega_{m0}}-\sqrt{\Omega_{m0}}(1+z)^3}{1- \sqrt{\Omega_{m0}}+\sqrt{\Omega_{m0}}(1+z)^3}\right].
%\end{equation}
%
%In this case, the EoS of the DE is
%\begin{equation}
%w_{\rm DE}=-1-\frac{1-\sqrt{\Omega_{\rm m0}}}{1-\sqrt{\Omega_{\rm m0}} +2\sqrt{\Omega_{m0}}(1+z)^3}.
%\end{equation}
%
%We find that $q$ varies from $0.5$ to $-2.5$ and $w_{\rm DE}$ varies from $-1$ to $-2$, as $z$ goes from $\infty$ to $-1$. It means the DE in the CLDP model \eqref{eqn:Hzsp} is characterized by a phantom field which remains subdominant in the matter regime. For the sake of illustration, we have shown the variation of $q$ and $w_{DE}$ with $\Omega_{\rm m0}=0.28$ in the redshift range $[-1,3]$ in Fig.\ref{fig:qwdesp}. We see that the transition of the Universe from deceleration to acceleration occurs at $z=0.64$. The present values of $q$ and $w_{\rm DE}$ are $q(z=0)=-0.91$ and $w_{\rm DE}(z=0)=-1.31$, respectively.
%
%\begin{figure}[htb!]\centering
%\psfrag{z}[b][b]{$z$}
%\includegraphics[width=8cm]{qvsz.pdf}
%\psfrag{w}[b][b]{$w_{\rm de}$}
%\includegraphics[width=8cm]{wdevsz.pdf}
%\caption{\footnotesize{Left panel shows variation of $q$ vs $z$ while the right panel shows the evolution of $w_{\rm de}$ vs $z$. In both cases, we have chosen $\Omega_{\rm m0}=0.28$.}}
%\label{fig:qwdesp}
%\end{figure}
%\section{SLDP model with $n=0$ and an extra degree of freedom}
% It is well known that we are not sure about the evolutionary behavior of DE. So phenomenologically there is a lot of room to play in the dark energy sector. In the expansion history of Universe given by \eqref{eqn:Hzsp}, we notice that the expression $2\sqrt{ \Omega_{m0}}(1-\sqrt{\Omega_{m0}})+(1-\sqrt{\Omega_{m0}})^2(1+z)^{-3}$ corresponds to the DE stuff in the CLDP model. Obviously, the expression $(1+z)^{-3}$ is responsible for the dynamical evolution of DE. We replace it by $(1+z)^\alpha$, where $\alpha$ is a free parameter to be determined/fixed by the cosmological observations. With this replacement, the CLDP model gets an additional degree of freedom, and its evolution history reads as
% \begin{equation}\label{eqn:Hzalpha}
%H(z)=H_0 \sqrt{ \Omega_{m0}(1+z)^{3}+2\sqrt{ \Omega_{m0}}(1-\sqrt{\Omega_{m0}})+(1-\sqrt{\Omega_{m0}})^2(1+z)^{\alpha}}.
%\end{equation}
%
%
%
%The EoS parameter of DE is given by
%
%\begin{equation}\label{eq:w_alpha}
%w_{\rm DE}(z) =-1+ \frac{\alpha}{3}\left[ \frac{1-\sqrt{\Omega_{\rm m0}}}{1-\sqrt{\Omega_{\rm m0}} +2\sqrt{\Omega_{m0}}(1+z)^{-\alpha}}\right].
%\end{equation}
%
%Notice that the model \eqref{eqn:Hzalpha} offers different types of evolution of the Universe according to the values of $\alpha$: (i) $\alpha=0$ reduces the DE part to a constant with $w_{\rm DE}(z) =-1$, and therefore the model represents the standard $\Lambda$CDM model. (ii) In the case $\alpha>0$, $w_{\rm DE}(z)$ evolves from $-1+\frac{\alpha}{3}$ to $-1$ as $z$ goes from $\infty$ to $-1$, and therefore the DE may be interpreted to be arising from a quintessence field. (iii) For $\alpha<0$, $w_{\rm DE}(z)$ varies from $-1$ to $-1+\frac{\alpha}{3}$ as $z$ varies from $\infty$ to $-1$, and therefore DE of the model behaves as a phantom field which remains subdominant in the matter regime as illustrated in the special case $\alpha=-3$ in section 3. The EoS parameters of some other known energy sources are listed in Table \ref{tab:sources}, which can be accommodated by the CLDP model under consideration. Notice that it has become possible because of the inception of additional degree of freedom in the CLDP model.
%
%
%
%\begin{table}[h]
%\begin{center}
%\begin{tabular}{cl}
%\hline\hline
%EoS Parameter & Name of Source\\ \hline
%$1$ & stiff fluid/anisotropy \\
%$\frac{1}{3}$ & radiation/relativistic fluid \\
%$\gtrsim 0$ & warm dark matter \\
%$-\frac{2}{3}$ & Domain walls \\
%$-\frac{1}{3}$ & Cosmic strings/spatial curvature \\
%\hline\hline
%\end{tabular}
%\caption{List of the EoS parameters of some known energy sources}
%\label{tab:sources}
%\end{center}
%\end{table}
%
%In the light of above discussion, it would be interesting to see the value/range of the parameter $\alpha$ suggested by the observations. Therefore, we confront the CLDP model \eqref{eqn:Hzalpha} with the latest observational data in the next section.
%
%
%
%
%%\begin{figure}[htb!]\centering
%%\psfrag{w}[b][b]{$w_{\rm de}$}
%%\psfrag{z}[b][b]{$z$}
%%\includegraphics[width=9cm]{Oz.pdf}
%%\caption{\footnotesize{The EoS parameter of dark energy in CLDP model is plotted vs $z$, for
%%different $\alpha$ values. We observe that for positive $\alpha$ values, deviation from $\Lambda$CDM are more
%%noticeable. }}
%%%\jav I'll add another plot of CMB if necessary, and can add more plots for different functions i.e. $q$.}}
%%\label{fig:Oz}
%%\end{figure}
%%
%%Figure (?) shows the behavior of $H$ and $w$ for different values of $\alpha$.
%%\red{CMB plots: don't think they may be useful.. Because we started by modifying the background
%%evolution ($q$), but we can talk about that.}
%\subsection{Observational Constraints}
%%At the moment I have two codes to do the sampling process. One is the standard CosmoMC with updated datasets,
%%however at the moment I'm testing its results.
%The code we're using, - is named SimpleMC and its written in python. The plots shown below were done
%with this SimpleMC.
%About datasets, I have included the following ones \red{(provide a short explanation of each one)}:
%\begin{itemize}
%\item CMB (Planck, WP)
%\item SNe (JLA from Betoule et al. 2014)
%\item BAO (DR11LOWZ, DR11CMASS, MGS and Ly-$\alpha$: Auto, Cross)
%\end{itemize}
%
%The 1D marginalized distribution on individual parameters and 2D contours with 68.3 \% and 95.4 \% confidence limits are shown in Fig.\ref{fig:LVDPzBR} for the CLDP model. The mean values of the CLDP model parameters $\Omega_m$ and $H_{0}$ constrained with $H(z)$+SN Ia data are given in Table \ref{table:CLDPobs}. The $1\sigma$, $2\sigma$ and $3\sigma$ errors, $\chi^2_{min}$ and $\chi^2_{min}$/dof are also given in Table \ref{table:CLDPobs}.
%
%
%
%
%
%
%
%
%
% \begin{figure}[htb!]\centering
%\psfrag{w}[b][b]{$w_{\rm de}$}
%\psfrag{z}[b][b]{$z$}
%\includegraphics[width=8cm]{Plot_1_1D.pdf}
%\caption{\footnotesize{1D marginalized posterior distributions, using two different combinations of datasets. \jav Seems like
%$\alpha=-3$ is ruled out at high confidence level (bear in mind this is the first trial). But $\alpha=1$ is preferred
%by BAO and SN, interesting!! , the component $(1+z)^1$ sometimes is seen as cosmic strings.}}
%\label{fig:Oz}
%\end{figure}
% \begin{figure}[htb!]\centering
%\psfrag{w}[b][b]{$w_{\rm de}$}
%\psfrag{z}[b][b]{$z$}
%\includegraphics[width=8cm]{Plot_1_2D.pdf}
%\includegraphics[width=8cm]{Plot_2_2D.pdf}
%\caption{\footnotesize{2D marginalized posterior distributions, using two different combinations of datasets}}
%\label{fig:Oz}
%\end{figure}
%\begin{table}[htb!]\small\centering
%\caption{Constraints on parameter space of cosine model. Mean values are shown with 68\% and 95\% C.L.}\label{tab:results1}
%\begin{tabular}{|l|ll|ll|}
%\hline
%Data $\rightarrow$ & \multicolumn{2}{|c|}{Planck } & \multicolumn{2}{c|}{Planck }\\\hline
%Parameters & Mean with errors & Bestfit& Mean with errors & Bestfit \\ \hline
%k & & &
% \\[8pt]
%$\Omega_b h^2$ & $ 0.02231_{- 0.00023- 0.00045}^{+ 0.00023+ 0.00046}$ & $ 0.02218$&$0.02228^{+0.00016+0.00032}_{-0.00016-0.00032}$ & $ 0.02236$
% \\[8pt]
%$\Omega_c h^2$ & $0.1179^{+0.0022+0.0043}_{-0.0022-0.0042}$ & $ 0.1183$&$0.1191^{+0.0015+0.0031}_{-0.0015-0.0029}$& $ 0.1168$
% \\[8pt]
%$100\theta_{MC}$ & $1.04110^{+0.00049+0.00098}_{-0.00049-0.00093}$ & $ 1.04096$& $1.04088^{+0.00033+0.00064}_{-0.00033-0.00066}$ & $ 1.04104$
% \\[8pt]
%$\tau$ & $0.058^{+0.020+0.038}_{-0.020-0.038} $& $ 0.051$& $0.056^{+0.019+0.038}_{-0.019-0.038} $ & $ 0.077$
% \\[8pt]
%$n_s$ & $0.969^{+0.006+0.013}_{-0.006-0.012} $& $ 0.968$& $0.9659^{+0.0049+0.0095}_{-0.0049-0.0096}$ & $ 0.9726$
% \\[8pt]
%${\rm{ln}}(10^{10} A_s)$ & $3.046^{+0.038+0.075}_{-0.038-0.074}$ & $ 3.036$& $3.044^{+0.038+0.075}_{-0.038-0.074} $& $ 3.077$
%\\[8pt]
%$\Omega_k$ & $-0.005^{+0.009+0.015}_{-0.007-0.016} $ & $ -0.006$&$-0.0037^{+0.0083+0.0140}_{-0.0065-0.0150} $ & $ -0.0002$
% \\[8pt]
%\hline
%
%$\Omega_{\rm m0}$ & $0.327^{+0.027+0.063}_{-0.034-0.059} $ & $ 0.332$& $0.327^{+0.027+0.062}_{-0.034-0.058} $ & $ 0.302$
% \\[8pt]
%$H_0$ & $65.9^{+3.2+6.4}_{-3.2-6.1} $ & $ 65.2$& $66.1^{+3.1+6.2}_{-3.1-6.0} $ & $ 68.5$
% \\[8pt]
%${\rm{Age}}/{\rm{Gyr}}$ & $14.02^{+0.34+0.68}_{-0.34-0.67} $ & $ 14.07$& $13.96^{+0.33+0.65}_{-0.33-0.63} $ & $ 13.79$\\
%\hline
%\end{tabular}
%\end{table}
\pagebreak
\vspace{7cm}
\begin{figure}[htb!]\centering
\includegraphics[width=8.3cm]{Fig3a.pdf}
\includegraphics[width=8.3cm]{Fig3b.pdf}
\caption{\footnotesize{Plots of $D_M(z)/r_d\sqrt{z}$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP (left panel) and flat (right panel) $\Lambda$CDM models constrained by Planck+SN+BAO data. In both panels, the error bars correspond to BOSS CMASS sample ($z=0.57$), LyaF auto-correlation ($z=2.34$) and LyaF-QSO cross correlation ($z=2.36$) measurements of $D_M/r_d$ as mentioned in Table II of Ref. \cite{aub14}.}}
\label{fig:3}
\end{figure}
\begin{figure}[htb!]\centering
\includegraphics[width=8.3cm]{Fig4a.pdf}
\includegraphics[width=8.3cm]{Fig4b.pdf}
\caption{\footnotesize{Plots of $D_V(z)/r_d\sqrt{z}$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP (left panel) and flat (right panel) $\Lambda$CDM models constrained by Planck+SN+BAO data. In both panels, the error bars correspond to 6dFGS ($z=0.106$), MGS ($z=0.15$) and BOSS LOWZ Sample ($z=0.32$) measurements of $D_V/r_d$ as mentioned in Table II of Ref. \cite{aub14}.}}
\label{fig:4}
\end{figure}
\begin{figure}[htb!]\centering
\includegraphics[width=8.3cm]{Fig2a.pdf}
\includegraphics[width=8.3cm]{Fig2b.pdf}
\caption{\footnotesize{Left Panel: Plots of $zD_H(z)/r_d\sqrt{z}$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP (left panel) and flat (right panel) $\Lambda$CDM models constrained by Planck+SN+BAO data. In both panels, the error bars correspond to BOSS CMASS sample ($z=0.57$), LyaF auto-correlation ($z=2.34$) and LyaF-QSO cross correlation ($z=2.36$) measurements of $D_H/r_d$ as mentioned in Table II of Ref.\cite{aub14}. Middle Panel: Plots of $D_M(z)/r_d\sqrt{z}$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP (left panel) and flat (right panel) $\Lambda$CDM models constrained by Planck+SN+BAO data. In both panels, the error bars correspond to BOSS CMASS sample ($z=0.57$), LyaF auto-correlation ($z=2.34$) and LyaF-QSO cross correlation ($z=2.36$) measurements of $D_M/r_d$. Right Panel: }}
\label{fig:2}
\end{figure}
\begin{figure}[htb!]\centering
\includegraphics[width=8.3cm]{Fig5a.pdf}
\includegraphics[width=8.3cm]{Fig5b.pdf}
\caption{\footnotesize{Left Panel: Plot of $w_{DE}(z)$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP model. The horizontal red line stands for $w_\Lambda=-1$, the EoS parameter of dark energy in the $\Lambda$CDM model. Right Panel: Plots of $w_{eff}(z)$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP (Gray color) and $\Lambda$CDM (Red color) models.}}
\label{fig:5}
\end{figure}
\begin{figure}[htb!]\centering
\includegraphics[width=8.3cm]{Fig6a.pdf}
\includegraphics[width=8.3cm]{Fig6b.pdf}
\caption{\footnotesize{Left Panel: Plots of $q(z)$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP (Gray color) and $\Lambda$CDM (Red color) models. Right Panel: Plot of $j(z)$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP model. The horizontal red line stands for $j_\Lambda=1$, the jerk parameter in the $\Lambda$CDM model. Plots of $D_V(z)/r_d\sqrt{z}$ curve with 1$\sigma$ and 2$\sigma$ error bands for SLDP (left panel) and flat (right panel) $\Lambda$CDM models constrained by Planck+SN+BAO data. In both panels, the error bars correspond to 6dFGS ($z=0.106$), MGS ($z=0.15$) and BOSS LOWZ Sample ($z=0.32$) measurements of $D_V/r_d$.}}
\label{fig:5}
\end{figure}
%\section{SLDP from Low Energy String Effective Bosonic Action}
%We consider gravi-dilaton string effective action with a cosmological constant in $(1+3+n)$-dimensions written in the {\sl string frame}:
%\begin{equation}
%\label{eqn:action}
%I = \int_{\mathcal{M}} {\rm d}^{1+3+n}x \sqrt{|g|} e^{-2 \varphi} \left \{ \mathcal{R}+2\Lambda+ 4\; \partial_{\mu} \varphi \partial^{\mu} \varphi \right \},
%\end{equation}
%where $\mathcal{R}$ is the scalar curvature of the space-time metric $g$, $\varphi$ is the dilaton field and $\Lambda$ is a cosmological constant. We note that the choices $1+3+n=10$ and $1+3+n=26$ correspond to the gravi-dilaton string effective action for the anomaly-free superstring and bosonic string theories, respectively.
%
%We consider a spatially homogeneous but not necessarily isotropic $(1+3+n)$-dimensional synchronous space-time metric that involves a maximally symmetric three dimensional flat external space metric and a compact $n$-dimensional flat internal space metric:
%\begin{equation}
%\label{eqn:HDmetric}
%{\rm d}s^2 = -{\rm d}t^2 + a^2(t) \left ( {\rm d}x^2 + {\rm d}y^2 +{\rm d}z^2 \right ) + s^2(t)
%\left ( {\rm d}\theta_{1}^{2} +...+ {\rm d}\theta_{n}^{2}\right ).
%\end{equation}
%Here $t$ is the cosmic time variable, $(x,y,z)$ are the Cartesian coordinates of the 3-dimensional flat space that represents the space we observe today, and $(\theta_1, ...,\theta_n)$ are the coordinates of the $n$-dimensional, compact (toroidal) internal space that represents the space that cannot be observed directly and locally today. The scale factors $a(t)$ of the 3-dimensional external space and $s(t)$ of the $n$-dimensional internal space are functions of $t$ only.
%
%We shall consider the higher dimensional steady state universe condition, which has been proposed in a recent study \cite{AkarsuDereli12HDSS}. Accordingly, we define a higher dimensional steady-state universe with two properties: (i) the higher dimensional universe has a constant volume as a whole but the internal and external spaces are dynamical, (ii) the energy density is constant in the higher dimensional universe. However in this study, we do not introduce any matter source in higher dimensions and hence it is enough if we consider only the first one of these properties. Accordingly, we assume that the volume scale factor of the higher dimensional universe, i.e. the $(3+n)$-dimensional volume, is constant:
%\begin{equation}
%\label{eqn:constvol}
%V=a^{3}s^{n}=V_{0}.
%\end{equation}
%$V_{0}$ is a positive real constant.
%
%Eventually we arrive at the following set of equations:
%\begin{equation}
%\label{eqn:12b}
%\frac{3}{2}\left(\frac{1}{n}+1\right)\frac{{\dot{a}}^2}{a^2}+\frac{3}{n}\frac{\ddot{a}}{a}-2\ddot{\varphi}+2{\dot{\varphi}}^2-\frac{6}{n}{\dot{\varphi}}\frac{\dot{a}}{a}+\Lambda=0,
%\end{equation}
%\begin{equation}
%\label{eqn:13b}
%\frac{3}{2}\left(\frac{3}{n}+1\right)\frac{{\dot{a}}^{2}}{a^2}-2{\ddot{\varphi}} +2{\dot{\varphi}}^{2}+\Lambda = 0,
%\end{equation}
%\begin{equation}
%\label{eqn:14b}
%\left(\frac{9}{2n}+\frac{5}{2}\right)\frac{\dot{a}^{2}}{a^2}-\frac{\ddot{a}}{a}-2{\ddot{\varphi}}+2{\dot{\varphi}}^{2}+2\frac{\dot{a}}{a}{\dot{\varphi}}+\Lambda=0,
%\end{equation}
%\begin{equation}
%\label{eqn:16b}
%-\frac{3}{2}\left(\frac{3}{n}+1\right)\frac{\dot{a}^{2}}{a^2}+2{\dot{\varphi}}^{2}+\Lambda = 0.
%\end{equation}
%
%We obtain the dilaton field as follows:
%\begin{equation}
%\varphi=-\frac{1}{2}\ln{\left(\sqrt{\frac{\mathcal{E}}{\Lambda}}\sin (\sqrt{2\Lambda}\;t)\right)},\quad 0\leq t \leq \frac{\pi}{\sqrt{2\Lambda}},
%\end{equation}
%where $\mathcal{E}$ is a real constant of integration. We obtain the scale factors, Hubble and deceleration parameters of the external and internal spaces as follows:
%\begin{eqnarray}
%a=a_{1}\,e^{\frac{1}{3}\sqrt{\frac{3n}{3+n}}\,{\rm{arctanh}}\left(-\cos(\sqrt{2\Lambda}\;t)\right)}\\
%H_{a}=\frac{1}{3}\sqrt{\frac{3n}{3+n}}\;\frac{\sqrt{2\Lambda}}{\sin(\sqrt{2\Lambda}\; t)}\\
%q_{a}=-1+3\sqrt{\frac{3+n}{3n}}\;\cos(\sqrt{2\Lambda}\; t)
%\end{eqnarray}
%İnternal
%\begin{eqnarray}
%s=s_{1}\,e^{-\frac{1}{n}\sqrt{\frac{3n}{3+n}}\,{\rm{arctanh}}\left(-\cos(\sqrt{2\Lambda}\;t)\right)}\\
%H_{s}=-\frac{1}{n}\sqrt{\frac{3n}{3+n}}\;\frac{\sqrt{2\Lambda}}{\sin(\sqrt{2\Lambda}\; t)}\\
%q_{s}=-1-n\sqrt{\frac{3+n}{3n}}\;\cos(\sqrt{2\Lambda}\; t)
%\end{eqnarray}
%Here $a_{1}$ and $s_{1}$ are integration constants that obey ${a_{1}}^3{s_{1}}^n=V_{0}$. We note the deceleration parameter of the external space yields the form of cosine law. The factor in front of the cosine termi, on the other hand, is not arbitrary but dependent of the number of internal dimensions $n$ and can get values between $2\sqrt{3}$ and $\sqrt{3}$. $q_{a}=2\sqrt{3}-1$ and $q_{a}=\sqrt{3}-1$.
%
%
%
%
%
%
%
%
%
%
%
%
%
%