-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFPVSWORDS_grand_average_evoked.py
executable file
·150 lines (105 loc) · 4.3 KB
/
FPVSWORDS_grand_average_evoked.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/imaging/local/software/mne_python/mne1.4.0_1/bin/python
"""
Grand-average evoked data for FPVS.
Read evoked data created by FPVS_average_epochs.py,
average across subjects, plot curves and topographies.
==========================================
"""
# TO DO: maxfilter interpolate to common sensor configuration
import sys
import os
from os import path as op
import numpy as np
# os.environ["QT_QPA_PLATFORM"] = "offscreen"
# from mayavi import mlab
# mlab.options.offscreen = True
# import matplotlib
# matplotlib.use("Agg") # for running graphics on cluster ### EDIT
# from matplotlib import pyplot as plt
# from copy import deepcopy
from importlib import reload
import mne
import config_fpvswords as config
reload(config)
print(mne.__version__)
# conditions
conds = config.do_conds
# base frequencies as strings
freqs_all = [str(ff) for ff in config.fpvs_freqs]
figs_dir = "Figures"
# conditions
conds = config.do_conds
def run_grand_average_evoked(sbj_ids):
"""Plot evoked data for one subject."""
# for evoked created with and without Notch filter for base frequency
for do_notch in [0, 1]:
if do_notch: # if Notch filter at base frequency requested
# add to epoch file name
str_notch = "_nch"
else:
str_notch = ""
for cond in conds: # conditions
for ev_type in config.event_ids[cond]:
evos = []
for sbj_id in sbj_ids:
# path to subject's data
sbj_path = op.join(
config.data_path, config.map_subjects[sbj_id][0])
evo_fname = op.join(
sbj_path,
"AVE",
"%s_f_%s%s-ave.fif" % (cond, ev_type, str_notch),
)
print("Reading evoked data from %s." % evo_fname)
# there is only one Evoked object in there
evoked = mne.read_evokeds(evo_fname, 0)
print("Bads: ")
print(evoked.info["bads"])
evos.append(evoked)
# grand-average evoked data
print("Grand-averaging %d files." % len(evos))
gm_evoked = mne.grand_average(evos, interpolate_bads=True)
gm_fname = op.join(
config.grandmean_path,
"AVE",
"%s_f_%s%s-ave.fif" % (cond, ev_type, str_notch),
)
print("Writing GM evoked to %s." % gm_fname)
mne.write_evokeds(gm_fname, gm_evoked, overwrite=True)
# # parameters for plotting curves
# ts_args = dict(spatial_colors=True, gfp=True)
# # While we are here, plot evoked
# times = [0.12, 0.19, 0.24, 0.36]
# figs = gm_evoked.plot_joint(times=times, title=freq, ts_args=ts_args)
# # path to GM
# gm_path = op.join(config.data_path, "GM")
# # path to sub-directory for figures
# figs_path = op.join(gm_path, figs_dir)
# for [fi, fig] in enumerate(figs):
# fig_fname = op.join(
# figs_path,
# "%s_f_%s_%s%s_joint%d.jpg"
# % (
# cond,
# config.raw_ICA_suff,
# "".join(freq.split(".")),
# str_notch,
# fi,
# ),
# )
# print("Saving figure to %s." % fig_fname)
# fig.savefig(fig_fname)
# plt.close("all")
return
# get all input arguments except first
# if number not in config list, do all of them
if (len(sys.argv) == 1) or (
int(sys.argv[1]) > np.max(list(config.map_subjects.keys()))
):
# IDs don't start at 0
sbj_ids = config.do_subjs
else:
# get list of subjects IDs to process
sbj_ids = [int(aa) for aa in sys.argv[1:]]
# raw, psds, psds_as_evo, freqs = run_PSD_raw(ss)
data_runs = run_grand_average_evoked(sbj_ids)