-
Notifications
You must be signed in to change notification settings - Fork 9
/
lactose.r
58 lines (41 loc) · 2 KB
/
lactose.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
lactose <- function(lac,control)
{
# timepoints
tps <- c(0,10,20,30,40)
# number of replications
reps <- c(1,2,3)
# conditions
conds <- c("c", "t")
# making a data frame which shows the replications and conditions with the given timepoints
exp_fac <- data.frame(dataorder=seq(1,length(reps)*length(conds)*length(tps)), conditions=rep(conds,each=length(reps)*length(tps)),
replicates=rep(reps,length(tps),length(reps)),
tps=rep(tps,length(conds),each=length(reps)))
exp_fac$dataorder=1:((length(reps)*length(conds)*length(tps)))
# sort the exp_fac first by condition and then by replicates and tps
exp_fac=with(exp_fac,exp_fac[order(conditions,replicates,tps),])
colnames(lac) <- paste("t",rep(tps,length(reps)),sep="")
colnames(control) <- paste("c",rep(tps,length(reps)),sep="")
lac_data <- lac
control_data <- control
exp_val <- cbind(control_data, lac_data)
colnames(exp_val) <- gsub("\\.[1-3]","", colnames(exp_val))
exp_val <- log2(exp_val)
colnames(exp_val) <- gsub("\\.[1-3]","", colnames(exp_val))
# E(Yg)=X*Ag ------> we have Yg, therefor we have to create X to calculate Ag
exp_structure=factor(colnames(exp_val))
X=model.matrix(~0+exp_structure)
colnames(X)=levels(exp_structure)
# this is Ag :
lm.fit=lmFit(exp_val,X)
# we have to calculate differences between control and treatment at each timepoint j, therefore:
mc=makeContrasts('t10-c10','t20-c20','t30-c30','t40-c40',levels=X)
c.fit=contrasts.fit(lm.fit,mc)
# to calculate P.values we use moderate t-statistic with eBayes:
eb=eBayes(c.fit)
bstat <- eb$lods
pr_lactose <- (exp(bstat) / (matrix(1,nrow(bstat),ncol(bstat))+exp(bstat)))
write.table(pr_lactose,"Data/pr_lac.txt",row.names=T,col.names=T,sep="\t")
data <- sapply(paste("t",tps,sep=""),function(name,x){apply(x[,which(colnames(x)==name)],1,median)},exp_val)
write.table(data,"Data/lac.txt",row.names=T,col.names=T,sep="\t")
return(pr_lactose)
}