-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathread_results_max_same_sign.r
142 lines (114 loc) · 6.26 KB
/
read_results_max_same_sign.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
read_results <- function()
{
# initialization of the network structure with respect to the overall data set
links <- data.frame(from=c(),to=c(),connected=c(),weight=c(),stringsAsFactors=F)
# initialization of the network structure with respect to each single data set
links_cold <- data.frame(from=c(),to=c(),connected=c(),weight=c(),stringsAsFactors=F)
links_heat <- data.frame(from=c(),to=c(),connected=c(),weight=c(),stringsAsFactors=F)
links_ox <- data.frame(from=c(),to=c(),connected=c(),weight=c(),stringsAsFactors=F)
links_lac <- data.frame(from=c(),to=c(),connected=c(),weight=c(),stringsAsFactors=F)
# set the directory to the folder in which the results are stored
files <- list.files("Results/obj")
g_orf_syn <- genes$ORF
names(g_orf_syn) <- genes$synonym
# provide the data for creating the histogram of differences between the regression coefficiences obtained from each single data set
hist_mat <- matrix(0,ncol=4)
# read each file and make the networks
for (f in files)
{
g_names <- as.character(g_orf_syn[which(names(g_orf_syn)==gsub("_lqa_at_each_tp.obj","",f) )])
#load(paste("~/Heraklit-Nooshin//home/Nooshin/Network inference method (with Jeanne)/Results//obj_at_each/",f,sep=""))
load(paste("Results/obj/",f,sep=""))
beta <- fit$beta.opt
mat <- matrix(beta,ncol=4,nrow=length(beta)/4,byrow=F)
tmp <- names(beta)[1:(length(beta)/4)]
rownames(mat) <- as.character(g_orf_syn[tmp])
hist_mat <- rbind(hist_mat,mat)
ids<- which(apply(mat,1,function(r)any(r!=0))==T)
ids2 <- which(apply(mat[ids,],1,function(r)any(r<=0) & any(r>=0))==T)
ids <- setdiff(ids,ids2)
if (length(ids)>1)
{
links <- rbind(links,data.frame(from=rownames(mat)[ids],to=rep(g_names,length(ids)),connected=as.integer(rep(1,length(ids))),weight=as.numeric(apply(mat[ids,],1,function(r)r[which.max(abs(r))])),stringsAsFactors=F))
links_heat <- rbind(links_heat,
data.frame(from=rownames(mat)[ids],to=rep(g_names,length(ids)),
connected=as.integer(rep(1,length(ids))),
weight=as.numeric(mat[ids,1]),stringsAsFactors=F))
links_cold <- rbind(links_cold,
data.frame(from=rownames(mat)[ids],to=rep(g_names,length(ids)),
connected=as.integer(rep(1,length(ids))),
weight=as.numeric(mat[ids,2]),stringsAsFactors=F))
links_ox <- rbind(links_ox,
data.frame(from=rownames(mat)[ids],to=rep(g_names,length(ids)),
connected=as.integer(rep(1,length(ids))),
weight=as.numeric(mat[ids,3]),stringsAsFactors=F))
links_lac <- rbind(links_lac,
data.frame(from=rownames(mat)[ids],to=rep(g_names,length(ids)),
connected=as.integer(rep(1,length(ids))),
weight=as.numeric(mat[ids,4]),stringsAsFactors=F))
}
else
if (length(ids) == 1)
{
links <- rbind(links,data.frame(from=rownames(mat)[ids],to=g_names,connected=1,weight=as.numeric(mat[ids,][which.max(abs(mat[ids,]))]),stringsAsFactors=F))
links_heat <- rbind(links_heat,
data.frame(from=rownames(mat)[ids],to=g_names,
connected=1,weight=as.numeric(mat[ids,1]),stringsAsFactors=F))
links_cold <- rbind(links_cold,
data.frame(from=rownames(mat)[ids],to=g_names,
connected=1,weight=as.numeric(mat[ids,2]),stringsAsFactors=F))
links_ox <- rbind(links_ox,
data.frame(from=rownames(mat)[ids],to=g_names,
connected=1,weight=as.numeric(mat[ids,3]),stringsAsFactors=F))
links_lac <- rbind(links_lac,
data.frame(from=rownames(mat)[ids],to=g_names,
connected=1,weight=as.numeric(mat[ids,4]),stringsAsFactors=F))
}
rownames(links) <- NULL
rownames(links_heat) <- NULL
rownames(links_cold) <- NULL
rownames(links_ox) <- NULL
rownames(links_lac) <- NULL
}
hist(c(hist_mat[,2]-hist_mat[,1],hist_mat[,3]-hist_mat[,2],hist_mat[,4]-hist_mat[,3]),breaks=1000,xlab="Differences between the regression coefficiences", main="Histogram")
# GRNs from all data sets
links[,1] <- tolower(links[,1])
links[,2] <- tolower(links[,2])
neg_link <- links[which(links$weight<0),]
pos_link <- links[which(links$weight>0),]
ROC_analysis_links <- (links[,c(1,2,4)])
ROC_analysis_links$weight <-(abs(ROC_analysis_links$weight))/
(max(abs(ROC_analysis_links$weight)))
# GRNs from cold data set
links_cold[,1] <- tolower(links_cold[,1])
links_cold[,2] <- tolower(links_cold[,2])
neg_link_cold <- links_cold[which(links_cold$weight<0),]
pos_link_cold <- links_cold[which(links_cold$weight>0),]
ROC_analysis_cold <- (links_cold[,c(1,2,4)])
ROC_analysis_cold$weight <-(abs(ROC_analysis_cold$weight))/
(max(abs(ROC_analysis_cold$weight)))
# GRNs from heat data set
links_heat[,1] <- tolower(links_heat[,1])
links_heat[,2] <- tolower(links_heat[,2])
neg_link_heat <- links_heat[which(links_heat$weight<0),]
pos_link_heat <- links_heat[which(links_heat$weight>0),]
ROC_analysis_heat <- (links_heat[,c(1,2,4)])
ROC_analysis_heat$weight <-(abs(ROC_analysis_heat$weight))/
(max(abs(ROC_analysis_heat$weight)))
# GRNs from oxidative data set
links_ox[,1] <- tolower(links_ox[,1])
links_ox[,2] <- tolower(links_ox[,2])
neg_link_ox <- links_ox[which(links_ox$weight<0),]
pos_link_ox <- links_ox[which(links_ox$weight>0),]
ROC_analysis_ox <- (links_ox[,c(1,2,4)])
ROC_analysis_ox$weight <-(abs(ROC_analysis_ox$weight))/
(max(abs(ROC_analysis_ox$weight)))
# GRNs from lactose data set
links_lac[,1] <- tolower(links_lac[,1])
links_lac[,2] <- tolower(links_lac[,2])
neg_link_lac <- links_lac[which(links_lac$weight<0),]
pos_link_lac <- links_lac[which(links_lac$weight>0),]
ROC_analysis_lac <- (links_lac[,c(1,2,4)])
ROC_analysis_lac$weight <-(abs(ROC_analysis_lac$weight))/
(max(abs(ROC_analysis_lac$weight)))
}