-
Notifications
You must be signed in to change notification settings - Fork 2
/
categorizer.cpp
1288 lines (1178 loc) · 58.3 KB
/
categorizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <Arduino.h>
#include "categorizer.h"
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/*
Copyright Felix Baessler, felix.baessler@gmail.com
This software is released under CC-BY-NC 4.0.
The licensing TLDR; is: You are free to use, copy, distribute and transmit this Software for personal,
non-commercial purposes, as long as you give attribution and share any modifications under the same license.
Commercial or for-profit use requires a license.
SEE FULL LICENSE DETAILS HERE: https://creativecommons.org/licenses/by-nc/4.0/
OOK Raw Data Receiver
0. Radio Library
1. Recorder
2. Categorizer
3. Categorizer Library
==================
= 2. Categorizer = categorization of "continuous" signal durations into discrete duration levels
==================
2.1 CLUSTERER: Histogram- & Post- Clustering
2.1.1 Histogram-Clustering: based on histograms with adaptive bin sizes
2.1.1.1 First Histogram Initialization
2.1.1.2 Histogram Loop
2.1.1.2.1 Bin Filling: discard both untrusted values and border values
2.1.1.2.2 Bin Clustering
- link bins that are separated by 1 empty bin at most
- discard clusters that contain less than 3 values
- in case of “overlapping clusters” abort the reception
2.1.1.2.3 Outlier Sieving: collect the remaining values that could not be attributed to any cluster
2.1.1.2.4 Next Histogram Initialization
2.1.1.3 Test: Enumerate all Outliers
2.1.2 Post-Clustering
2.1.2.1 Border Processing: post-processing of the border values (discarded in histo-clustering)
2.1.2.1.1 border values classification: if the classification fails, the value becomes an outlier
2.1.2.1.2 border outlier aggregation: L1 aggregs
aggregation of outlier values to “mini clusters” of at least 3 values;
these aggregated outliers are removed from the list of outliers
2.1.2.2 Cluster-Classification: identification of a separator barrier
identification of a sufficiently large gap, separating ordinary values
from top values, which will “by virtue of their size” be treated as reliable
2.2 CORRECTOR: of Outliers and Untrusted Subsequences
2.2.1 Outlier Correction: correction of reliable outliers identified by the clusterer
2.2.1.1 reliable top-values preprocessing
top-outliers, above the separator barrier, are aggregated to clusters; they remain in the list of outliers
2.2.1.2 outlier separation
- false outliers: can be corrected and attributed to a cluster; they are removed from the list of outliers
- true outliers: resist correction and will be aggregated (level 1 aggregs); they remain in the list of outliers
2.2.1.3 resistant outlier aggregation
2.2.2 Untrusted Subsequences Correction: correction of unreliable values identified by the recorder
2.2.2.1 unreliable top-values preprocessing
unreliable top-values, above the separator barrier, are added to the outliers and aggregated on the fly
2.2.2.2 check for best-fit approximation
the remaining values are approximated by the nearest cluster center:
in absence of jumps, a “best-fit” is applied individually on each value of the untrusted subsequence
2.2.2.3 check for jump elimination
triplets comprising macro spikes or macro drops are resorbed:
3 consecutive values are reduced to 1 value, followed by 2 zero durations
Trace driven Categorizer of OOK-Signals
=======================================
given : a pulse sequence "TRACE" of alternating signal-HIGH and signal-LOW durations
objective : - identification of categories such that each duration value can be mapped to a corresponding category (duration levels)
- error correction based on the identified categories, i.e. elimination of spikes, drops and outliers
principle steps:
- separate trusted data from subsequences that contain unreliable values which are discarded from clustering
- separate densely populated value ranges (-> clusters) from sparsely populated value ranges (-> outliers)
- separate resistant outliers from outliers which can be corrected and thereafter attributed to a cluster
- aggregate resistant outliers from outliers which can be corrected and thereafter attributed to a cluster
- correct and classify the remaining, untrusted data
TRACE
-----
value : signal-HIGH or signal-LOW duration
HIGH- and LOW- durations are a priori unrelated and therefore clustered in separate steps
border values : the first (warm-up) and last (cool-down) values of a sequence
by construction (see recorder) the warm-up zone contains exclusively trusted values
reliable value : both values involved in a transition are unreliable, if their signal strengths differs by less than 5 dBm
trusted value : a value that is neither unreliable nor adjacent to an unreliable value
untrusted subsequence: subsequence of untrusted values
an untrusted subsequence comprises either four or five values
by construction (see recorder) they are separated by at least 3 consecutive reliable values
CATEGORIZER
-----------
clustering : clustering of trusted, non-border values, based on histograms with adaptive bin sizes
- clusters cover dense value ranges that are populated by more than two values
a value x belongs to cluster ind, if : cluster_floor[ind] <= x < cluster_ceil[ind]
clusters are settled once and for all (no additional or modified clusters after clustering)
- outliers cover sparsely populated value ranges that contain at most two values
other outlier sources: apart from clustering there are two additional sources of outliers:
- border outliers trusted border values that cannot be attributed to a cluster
- top-outliers special values above a rather high barrier (-> separator_barrier)
there are trusted and untrusted top-outliers, the latter is related to bizarre pulses ("spike followed by long pause")
separator_barrier : separates big values which are an order of magnitude higher than ordinary values
the separator_barrier usually separates chained sequences
aggregations : small clusters of aggregated border and outlier values
- level 1 aggregs : border-triggered aggregations, i.e. clusters that owe their existence to trusted border values (discarded from clustering)
- level 2 aggregs : aggregations of untrusted, correction-resistant outliers and
aggregations untrusted top-outliers
category : the category of a value is an index that maps the value to a cluster or an aggregation
aggregation indices follow after the cluster indices
classifiable : values that can be attributed to a category
OOK-Signals
-----------
On–Off Keying "OOK" is the modulation technique most widely found in low cost equipment:
- a HIGH is sent by a full-power RF carrier
- to transmit a LOW, the carrier is shut off
Information is conveyed by varying the duration of the HIGH- and LOW-signals.
In general, these durations are restricted to a limited number of duration levels (-> categories).
Clusterability
--------------
- nb of clusters (NC): <= 8, values map to relatively few clusters
- nb of aggregs (NC): <= 8, values map to relatively few aggregations
- nb of outliers (NO): <= 16, the number of outliers is kept small
- nb of hits (NH): <= 64, no restriction; max. 2 hits per bin (NB= 32 bins)
Robustness
----------
cluster robustness is enforced by the following measures:
- the two signal strength levels, HIGH and LOW, are separately clustered
- border values are kept away from clustering
- untrusted values are also discarded from clustering
*/
int8_t categorizer ( // return code
categories z[], // O categories of raw data values ([1]: HIGH-durations categories, [0]: LOW-durations categories)
uint16_t signal_duration[], // IO signal sequence: [even indices]: HIGH-durations, [odd indices]: LOW-durations
uint16_t sequence_length, // I total number of signal durations: number of HIGH- plus LOW-durations
uint16_t unreliable_count, // I number of received unreliable (flagged) values contained in the signal sequence
uint8_t &return_code, // O return_code
uint8_t uint8buf32[], // X uint8_t buffer
uint16_t uint16buf64[] // X uint16_t buffer
) {
uint16_t sequence_start_ind; // start index of signal_duration
uint16_t sequence_stop_ind; // stop index of signal_duration
bool cluster_overlap; // true, if at least one overlap between clusters has been detected
cluster_overlap= false;
/*PP
_psln(F(""));
_psln(F("trusted HIGH-Values Clustering"));
_psln(F("=============================="));
*/
sequence_start_ind= 2 - HIGH;
sequence_stop_ind= sequence_length - HIGH;
//P _ps(F("start index of HIGH-values: "));_pdln(sequence_start_ind);
//P _ps(F("stop index of HIGH-values: "));_pdln(sequence_stop_ind);
clusterer (
z[HIGH], // O signal_duration categories
signal_duration, // I flagged raw data value sequence: odd indices: HIGH-durations, even indices: LOW-durations
sequence_start_ind, // I start index of signal_duration
sequence_stop_ind, // I stop index of signal_duration
cluster_overlap, // O true, if at least one overlap between clusters has been detected
return_code, // O return_code (CRC_0: no error)
uint8buf32,
uint16buf64
);
if (return_code != CRC_0) return (return_code);
/*PP
category_printer (z[HIGH], signal_duration);
statistics (
z[HIGH], // I signal_duration categories
signal_duration, // I flagged raw data value sequence: odd indices: HIGH-durations, even indices: LOW-durations
sequence_start_ind, // I start index of signal_duration
sequence_stop_ind // I stop index of signal_duration
);
*/
/*PP
_psln(F(""));
_psln(F("trusted LOW-Values Clustering"));
_psln(F("============================="));
*/
sequence_start_ind= 2 - LOW;
sequence_stop_ind= sequence_length - LOW;
//P _ps(F("start index of LOW-values: "));_pdln(sequence_start_ind);
//P _ps(F("stop index of LOW-values: "));_pdln(sequence_stop_ind);
clusterer (
z[LOW], // O signal_duration categories
signal_duration, // I flagged raw data value sequence: odd indices: HIGH-durations, even indices: LOW-durations
sequence_start_ind, // I start index of signal_duration
sequence_stop_ind, // I stop index of signal_duration
cluster_overlap, // O true, if at least one overlap between clusters has been detected
return_code, // O return_code (CRC_0: no error)
uint8buf32,
uint16buf64
);
if (return_code != CRC_0) return (return_code);
/*PP
category_printer (z[LOW], signal_duration);
statistics (
z[LOW], // I signal_duration categories
signal_duration, // I flagged raw data value sequence: odd indices: HIGH-durations, even indices: LOW-durations
sequence_start_ind, // I start index of signal_duration
sequence_stop_ind // I stop index of signal_duration
);
*/
/*PP
_psln(F(""));
_psln(F("Error Correction"));
_psln(F("================"));
*/
if (!cluster_overlap) {
corrector (
z, // IO signal_duration categories (clusters are not modified)
signal_duration, // I flagged raw data value sequence: odd indices: HIGH-durations, even indices: LOW-durations
sequence_length, // I number of signal durations: HIGH- plus LOW- durations without end markers
unreliable_count, // I number of received unreliable (flagged) values contained in the signal sequence
return_code, // O return_code (CRC_0: no error)
uint16buf64
);
if (return_code != CRC_0) return (return_code);
}
/*PP
_psln(F(""));
_psln(F("HIGH-Value Categories"));
_psln(F("====================="));
category_printer (z[HIGH], signal_duration);
_psln(F(""));
_psln(F("LOW-Value Categories"));
_psln(F("===================="));
category_printer (z[LOW], signal_duration);
*/
// duration_category
_psln(F(""));
_psln(F("Categorized Sequence"));
//P _psln(F("===================="));
sequence_printer (z, signal_duration, sequence_length);
return (CRC_0);
} // end categorizer
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void clusterer (
categories &z, // O result of clustering process (categories of either HIGH- (z[HIGH]) or LOW- durations (z[LOW]))
uint16_t v[], // I flagged raw data value sequence: odd indices: HIGH-durations, even indices: LOW-durations
uint16_t v_start_ind, // I start index of v[] (included)
uint16_t v_stop_ind, // I stop index of v[] (included)
bool &overlap_flag, // O true, if at least one overlap between clusters has been detected
uint8_t &rc, // O return_code (0: no error)
uint8_t bin_count[], // X buffer: bin frequentation: number of values encountered in the range of the bin [b_ind] (0: empty; >0: occupied)
uint16_t h_hit_ind[] // X buffer: - indices of those values that are the first to hit an empty / sparsely populated bin (h_count)
// - with removed indices that are related to densely populated bins (h_count_2; -> outlier)
) {
// ************* //
// 2.1 CLUSTERER // Histogram- & Post- Clustering
// ************* //
// 2.1.1 Histogram-Clustering: based on histograms with adaptive bin sizes
// 2.1.1.1 First Histogram Initialization
// 2.1.1.2 Histogram Loop
// 2.1.1.2.1 Bin Filling
// discard both untrusted values and border values
// 2.1.1.2.2 Bin Clustering
// - link bins that are separated by 1 empty bin at most
// - discard clusters that contain less than 3 values
// - in case of “overlapping clusters” abort the reception
// 2.1.1.2.3 Outlier Sieving
// collect the remaining values that could not be attributed to any cluster
// 2.1.1.2.4 Next Histogram Initialization
// 2.1.1.3 Test: Enumerate all Outliers
// 2.1.2 Post-Clustering
// 2.1.2.1 Border Processing: post-processing of the border values (discarded in histo-clustering)
// 2.1.2.1.1 border values classification
// classification of the border values; if the classification fails, the value becomes an outlier
// 2.1.2.1.2 border outlier aggregation: L1 aggregs
// aggregation of outlier values to “mini clusters” of at least 3 values;
// these aggregated outliers are removed from the list of outliers
// 2.1.2.2 Cluster-Classification: identification of a separator barrier
// identification of a sufficiently large gap, separating ordinary values
// from top values, which will “by virtue of their size” be treated as reliable
// Clusterability Criteria
// -----------------------
// number of clusters (NC) : <= 8, values map to relatively few clusters
// number of aggregs (NC) : <= 8, values map to relatively few aggregations
// number of outliers (NO) : <= 16, the number of outliers is relatively small (e.g. < 5% of the data)
// number of hits (NH) : <= 64, bin occupation rate <= 100% (32: half of a histogram must be empty)
// Cluster Robustness
// ------------------
// robust clusters are essential for error correction
// the robustness is ensured by the following measures:
// - the two signal strength levels, HIGH and LOW, are separately clustered
// - border values are kept away from clustering
// - unreliable values and their neighbors are also discarded from clustering
// note that both values involved in a transition with a strength difference of less than 5 db are flagged as unreliable
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
{
// +++++++++++++++++++++++++++ //
// 2.1.1 Histogram-Clustering // production of clusters & outliers
// +++++++++++++++++++++++++++ //
// 2.1.1.1 First Histogram Initialization
// 2.1.1.2 Histogram Loop
// 2.1.1.2.1 Bin Filling
// discard both untrusted values and border values
// 2.1.1.2.2 Bin Clustering
// - link bins that are separated by 1 empty bin at most
// - discard clusters that contain less than 3 values
// - in case of “overlapping clusters” abort the reception
// 2.1.1.2.3 Outlier Sieving
// collect the remaining values that could not be attributed to any cluster
// 2.1.1.2.4 Next Histogram Initialization
// current cluster
uint8_t c_ind; // index of cluster
uint16_t c_center; // cluster mean value
uint16_t c_count; // sum of the frequencies of all bins that belong to the same cluster
uint16_t c_prev_count; // previous c_count
uint8_t c_hole_count; // number of consecutive empty-bins encountered within the current cluster (MAX_HOLES)
// current histogram
uint32_t h_width; // histogram range width: value range of the current histogram = NB * bin_width
uint16_t h_floor_val; // histogram base value : lowest value included in the current histogram
uint16_t h_next_floor; // floor of the next histogram (base value of the histogram with the next higher value range)
uint16_t h_ceil_val; // histogram ceil value : highest value = h_floor_val + h_width (ceil is not included)
// uint16_t h_hit_ind[NH]; // - indices of those values that are the first to hit an empty / sparsely populated bin (h_count)
// - with removed indices that are related to densely populated bins (h_count_2; -> outlier)
uint8_t h_ind; // index of h_hit_ind[]
uint8_t h_count; // number of elements in h_hit_ind[]
// bins of current histogram NB < 256: number of bins per histogram
uint8_t b_ind; // index of bin : bin_count[b_ind]
// uint8_t bin_count[NB]; // bin frequentation: number of values encountered in the range of the bin [b_ind] (0: empty; >0: occupied)
uint8_t bin_start_ind; // bin start index of cluster: to be mapped to z.cluster_floor[c_ind]
uint8_t bin_stop_ind; // bin stop index of cluster: to be mapped to z.cluster_ceil[c_ind]
uint16_t bin_width; // bin agglomeration width: value range per bin = 2 ** bin_width_2log
uint8_t bin_width_2log; // 2log of bin_width
uint32_t bin_mean; // local mean value (bin level)
// raw data values
uint16_t v_ind; // index of current value
uint16_t v_val; // current value = v[v_ind]
uint16_t v_count; // number of processed values (filtered and in range of v_start_ind ... v_stop_ind)
bool outlier_presence_flag; // true, if the histogram contains at least one outlier
bool ascending; // used for overlap detection
rc= CRC_0;
// initialize cluster
z.cluster_size= 0;
z.aggreg_size_1= 0;
z.aggreg_size_2= 0;
z.outlier_size= 0;
z.inlier_count= 0;
c_ind= 0;
// 2.1.1.1 First Histogram Initialization
// **************************************
// initialize first bottom value
h_next_floor= START_VAL;
// initialize bin size of histogram: BOTH bin_width AND corresponding 2log
bin_width_2log= 4;
bin_width= 1 << bin_width_2log;
// initiate all bins to empty
for (b_ind= 0; b_ind < NB; b_ind++) {
bin_count[b_ind]= 0;
}
// 2.1.1.2 Histogram Loop
// **********************
// begin histogram main loop
while (true) {
// presence of at least one outlier in this histogram
outlier_presence_flag= false;
// histogram bin width
// _psln("");
// _ps(F("histogram bin_width :"));_ps("\t");_pdln(bin_width);
// histogram bin width (NB = number of bins in the histogram)
h_width= NB * (uint32_t)bin_width;
// _ps(F("histogram h_width :"));_ps("\t");_pdln(h_width);
// histogram value range
// - histogram bottom value (floor is included)
h_floor_val= h_next_floor;
// _ps(F("histogram floor value:"));_ps("\t");_pdln(h_floor_val);
// - histogram top value (ceil is excluded, h_width used as uint32_t temporary)
h_width= h_floor_val + h_width;
if (h_width > CEIL_U) h_ceil_val= CEIL_U;
else h_ceil_val= h_width;
// _ps(F("histogram ceil value:"));_ps("\t");_pdln(h_ceil_val);
/*
// test: all bins should be empty
for (b_ind= 0; b_ind < NB; b_ind++) {
if (bin_count[b_ind] > 0) {
//E _psln(F("bins not empty error (should never occur !!!)"));
rc= CRC_14;
return;
}
}
*/
// initiate the next histogram bottom value
// find minimum: lowest value >= current top value
h_next_floor= CEIL_U;
// 2.1.1.2.1 Bin Filling: discard both untrusted values and border values
// =====================
// begin bin-filling (sequence scan, border values excluded)
v_count= 0;
// reset h_count: number of elements in h_hit_ind[]
h_count= 0;
// scan the trace between warm-up and cool-down
for (v_ind= v_start_ind + BORDER_WIDTH; v_ind <= v_stop_ind - BORDER_WIDTH; v_ind+= 2) {
// current value
v_val= v[v_ind];
// check range: floor value
if (v_val < h_floor_val) continue;
// begin filter: check immediate neighborhood for unreliable values
// - current element
if ((v[v_ind] & LSB) == UNRELIABLE) continue;
// - element in front the current element
if ((v[v_ind + 1] & LSB) == UNRELIABLE) continue;
// - element at the back of the current element
if ((v[v_ind - 1] & LSB) == UNRELIABLE) continue;
// end filter
// check range: ceil value
// and determine floor of next round (after filter !!!)
if (v_val >= h_ceil_val) {
// floor value of next histogram = lowest filtered value above the current ceil value
if (v_val < h_next_floor) h_next_floor= v_val;
continue;
}
v_count++;
// map value to bin
b_ind= (v_val - h_floor_val) >> bin_width_2log;
if (b_ind >= NB) {
//E _psln(F("histogram bin range error (should never occur !!!)"));
rc= CRC_10;
return;
}
// maximum population per bin = 255 (size of byte)
if (bin_count[b_ind] >= 255) continue;
// add occurrence of the current value to the corresponding bin
bin_count[b_ind]++;
// record the first FIRST_HITS (indices of those values that first hit the bin)
if (h_count < NH) {
if (bin_count[b_ind] <= FIRST_HITS) h_hit_ind[h_count++]= v_ind;
} else {
// does not occur if NH >= 2*NB
//E _ps(F("too many hits in histogram !!!"));_ps("\t");_pdln(h_count);
rc= CRC_6;
return;
}
}
// end bin-filling
// ---------------
// _ps(F("h_count="));_ps("\t");_pdln(h_count);
/*PP
// print histogram
_ps(F("number of processed values:"));_ps("\t");_pdln(v_count);
_psln("");
_psln(F("histogram"));
_psln(F("b_ind value count"));
for (b_ind= 0; b_ind < NB; b_ind++) {
_pd(b_ind);_ps("\t");_pd((b_ind << bin_width_2log) + h_floor_val);_ps("\t");_pdln(bin_count[b_ind]);
}
_psln("");
*/
// 2.1.1.2.2 Bin Clustering
// ========================
// - link bins that are separated by 1 empty bin at most
// - discard clusters that contain less than 3 values
// - in case of “overlapping clusters” abort the reception
// begin bin-clustering
b_ind= 0;
bin_stop_ind= 0;
while (b_ind < NB) {
// "START-BIN" of cluster interval: first occupied bin after a series of empty bins
bin_start_ind= NB;
while ((b_ind < NB) && (bin_count[b_ind++] == 0));
// set start bin, it may be empty if b_ind == NB
bin_start_ind= b_ind - 1;
// check histogram end?
if (b_ind >= NB) {
// check histogram overlap: start bin adjacent to next higher histogram?
if (bin_count[bin_start_ind] > 0) {
// start bin is not empty
// _psln(F("overlap: start bin adjacent to next histogram"));
// let the next histogram take care of this cluster
h_next_floor= (bin_start_ind << bin_width_2log) + h_floor_val;
// to avoid double in the outlier list (this bin will be processed in the next histogram)
bin_count[bin_start_ind]= 0;
}
break; // continue after end of bin clustering
}
if (bin_start_ind >= NB) {
//E _psln(F("bin_start_ind error error (should never occur !!!)"));
rc= CRC_11;
return;
}
// "STOP_BIN_SEQUENCE" of cluster interval: more than MAX_HOLES consecutive empty bins after a series of occupied bins
// note that within the bin-sequence of a cluster at most MAX_HOLES consecutive empty bins are tolerated
c_hole_count= 0;
// no stop bin found
bin_stop_ind= NB;
// check histogram end?
while (b_ind < NB) {
// count number of consecutive empty bins
if (bin_count[b_ind] > 0) {
if (c_hole_count > 0) z.inlier_count++;
c_hole_count= 0;
} else {
// number of consecutive empty bins > MAX_HOLES ?
if (++c_hole_count > MAX_HOLES) {
// set stop bin
bin_stop_ind= b_ind - MAX_HOLES;
break;
}
}
b_ind++;
}
// check histogram end?
if (b_ind == NB) {
// _ps(F("==> bin_stop_ind : "));_ps("\t");_pdln(bin_stop_ind);
// check overlap: stop bin sequence not yet reached?
if (bin_stop_ind == NB) {
// no stop bin found
// _psln(F("overlap: no stop bin in this histogram"));
// let the next histogram take care of this cluster
h_next_floor= (bin_start_ind << bin_width_2log) + h_floor_val;
// to avoid doubles in the outlier list (these bins will be processed in the next histogram)
for (b_ind= bin_start_ind; b_ind < NB; b_ind++) {
bin_count[b_ind]= 0;
}
} else {
//E _psln(F("very strange error (should never occur !!!)"));
rc= CRC_12;
return;
}
break; // continue after end of bin clustering
}
if (bin_stop_ind >= NB) {
//E _psln(F("bin_stop_ind error (should never occur !!!)"));
rc= CRC_13;
return;
}
/*PP
_ps(F("bin_start_ind (incl.): "));_ps("\t");_pdln(bin_start_ind);
_ps(F("bin_stop_ind (excl.): "));_ps("\t");_pdln(bin_stop_ind);
*/
// check overlapping clusters
if (bin_stop_ind - bin_start_ind >= 6) {
/*
_psln(F("*** cluster interval >= 6 ***"));
_psln(F("b_ind value count"));
for (b_ind= bin_start_ind; b_ind < bin_stop_ind; b_ind++) {
_pd(b_ind);_ps("\t");_pd((b_ind << bin_width_2log) + h_floor_val);_ps("\t");_pdln(bin_count[b_ind]);
}
*/
ascending= true;
c_prev_count= 0;
c_count= bin_count[bin_start_ind] + bin_count[bin_start_ind + 1];
for (b_ind= (bin_start_ind + 2); b_ind < bin_stop_ind; b_ind++) {
c_count+= bin_count[b_ind];
if (ascending) {
if ((c_count + 3) < c_prev_count) { // NEU MIN_SIZE ??
// change to descending
ascending= false;
}
} else {
if (c_count > (c_prev_count + 3)) { // NEU MIN_SIZE ??
// change to ascending
_psln("");
_psln(F("!!! overlapping clusters !!!"));
overlap_flag= true;
// rc= CRC_8;
// return;
ascending= true;
bin_stop_ind= b_ind - 2;
// _ps(F("bin_stop_ind (excl.): "));_ps("\t");_pdln(bin_stop_ind);
break;
}
}
c_prev_count= c_count;
// _pd(c_count);_ps("\t");
c_count-= bin_count[b_ind - 2];
}
// _psln("");
}
// count number of elements in cluster and approximate the mean value
c_count= 0;
bin_mean= 0;
uint8_t k= 1;
for (b_ind= bin_start_ind; b_ind < bin_stop_ind; b_ind++) {
c_count+= bin_count[b_ind];
bin_mean+= k * bin_count[b_ind];
k++;
}
// check number of elements in cluster
if (c_count < MIN_SIZE) {
// low density clusters contain less than three elements
// these bins are not emptied -> outlier
//P _ps(F("low density cluster: "));_ps("\t");_pdln(c_count);
// set flag: the sequence contains at least one outlier
outlier_presence_flag= true;
continue;
} else {
// the bins of high density clusters are emptied to avoid confusion with outliers
for (b_ind= bin_start_ind; b_ind < bin_stop_ind; b_ind++) bin_count[b_ind]= 0;
}
// record cluster
// --------------
z.cluster_count[c_ind]= c_count;
z.cluster_center[c_ind]= c_center=
((bin_start_ind << bin_width_2log) + ((bin_mean << bin_width_2log) / c_count) + h_floor_val - (bin_width >> 1)) & MSB;
z.cluster_floor[c_ind]= (bin_start_ind << bin_width_2log) + h_floor_val;
z.cluster_ceil[c_ind]= (bin_stop_ind << bin_width_2log) + h_floor_val;
if (++c_ind >= NC) {
z.cluster_size= NC;
//E _psln(F("too many clusters !!!"));
rc= CRC_3;
return;
}
b_ind= bin_stop_ind;
}
// end bin-clustering
// ------------------
// 2.1.1.2.3 Outlier Sieving: collect the remaining values that could not be attributed to any cluster
// =========================
// begin outlier collection
if (outlier_presence_flag) {
for (h_ind= 0; h_ind < h_count; h_ind++) {
v_ind= h_hit_ind[h_ind];
// current value
v_val= v[v_ind];
// map current value to bin
b_ind= (v_val - h_floor_val) >> bin_width_2log;
if (bin_count[b_ind] > 0) {
// this bin belongs to an outlier aggregation, because
// - bins belonging to high density clusters have been set to zero
// - and also overlap bins have been set to zero
//P _ps(F("new outlier"));_ps("\t");_pd(h_ind);_ps("\t");_pd(b_ind);_ps("\t");_pdln(v_val);
if (z.outlier_size >= NO) {
//E _psln(F("too many outliers !!!)"));
rc= CRC_5;
return;
}
z.outlier_ind[z.outlier_size++]= v_ind;
bin_count[b_ind]--;
}
}
}
// end outlier collection
// ----------------------
/*
// test: all bins should be emptied
for (b_ind= 0; b_ind < NB; b_ind++) {
if (bin_count[b_ind] > 0) {
//E _psln(F("bins not empty error 2 (should never occur !!!)"));
rc= CRC_14;
return;
}
}
*/
/*PP
if (z.outlier_size > 0) _psln(F("outliers (without borders)"));
for (o_ind= 0; o_ind < z.outlier_size; o_ind++) {_ps("\t");_pd(z.outlier_ind[o_ind]);_ps("\t");_pdln(v[z.outlier_ind[o_ind]]);}
*/
// 2.1.1.2.4 Next Histogram Initialization
// =======================================
// next value base
// ---------------
// _ps(F("next value base: "));_ps("\t");_pdln(h_next_floor);
if (h_next_floor == CEIL_U) {
break;
}
// move the next base in the middle of the first bin of the next histogram (subtract current bin_width)
h_next_floor-= bin_width;
// find appropriate bin_width and bin_width_2log for the next histogram
// --------------------------------------------------------------------
// temporary use of h_width (uint32_t)
h_width= h_ceil_val;
while (h_next_floor >= h_width) {
bin_width_2log++;
bin_width<<= 1;
h_width+= NB * (uint32_t)bin_width;
// _ps(F("new ceil: "));_ps("\t");_pd(h_width);_ps("\t");_pdln(NB * bin_width);
}
}
// end histogram main loop
// ***********************
// number of clusters
z.cluster_size= c_ind;
if (z.cluster_size == 0) {
//E _psln(F("no cluster !!!"));
rc= CRC_7;
return;
}
/*
// begin test ------------------------------------------------------------------------------------------------------------------------------------------------------
h_count= 0; // number of outliers
for (v_ind= v_start_ind + BORDER_WIDTH; v_ind <= v_stop_ind - BORDER_WIDTH; v_ind+= 2) {
// current value
v_val= v[v_ind];
// begin filter: check immediate neighborhood for unreliable values
// filter: check immediate neighborhood for unreliable values
// - element in front the current element
if ((v_ind < v_stop_ind) && ((v[v_ind + 1] & LSB) == UNRELIABLE)) continue;
// - current element
if (((v[v_ind ] & LSB) == UNRELIABLE)) continue;
// - element at the back of the current element
if ((v_ind > v_start_ind) && ((v[v_ind - 1] & LSB) == UNRELIABLE)) continue;
// end filter: check immediate neighborhood for unreliable values
// check whether the current value belongs to a cluster
if (!classifier (z, v_val, c_ind, c_center, C_OPT_4)) {
// _ps(F("TEST: "));_ps(_cT);_pd(v_ind);_ps(_cT);_pdln(v_val);
h_count++;
}
if (h_count >= NO) break;
}
// _ps(F("TEST number of outliers: "));_ps(_cT);_pdln(h_count);
if (z.outlier_size != h_count) {
//E _psln(F("number of outliers test error (should never occur !!!)"));
rc= CRC_15;
return;
}
// end test --------------------------------------------------------------------------------------------------------------------------------------------------------
*/
}
// END Histogram-Clustering
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
{ // BEGIN Post-Clustering
// +++++++++++++++++++++++ //
// 2.1.2 Post-Clustering // production of aggregations and outliers
// +++++++++++++++++++++++ //
// 2.1.2.1 Border Processing: post-processing of the border values (discarded in histogram clustering)
// 2.1.2.1.1 border values classification
// classification of the border values; if the classification fails, the value becomes an outlier
// 2.1.2.1.2 border outlier aggregation: L1 aggregs
// aggregation of outlier values to “mini clusters” of at least 3 values;
// these aggregated outliers are removed from the list of outliers
// 2.1.2.2 Cluster-Classification: identification of a separator barrier
// identification of a sufficiently large gap, separating ordinary values
// from top values, which will “by virtue of their size” be treated as reliable
// 2.1.2.3 Sort Outlier Indices
// 2.1.2.1 Border Processing: post-processing of the border values (discarded in histo-clustering)
// *************************
// classification and correction of both border regions (warm-up and cool-down)
// note: the first HIGH of the sequence is considered as too insecure to produce any outlier
uint8_t o_ind; // index of outlier_ind
uint8_t ind; // index of cluster
uint16_t center; // cluster mean value
uint16_t v_ind; // index of current value
uint16_t v_val; // current value = v[v_ind]
uint16_t v_new_barrier; // temporary separator_barrier
uint16_t v_old_barrier; // temporary separator_barrier
/*PP
_psln("");
_psln(F("border values"));
_psln(F("-------------"));
_psln(F("ind orig modified "));
*/
// 2.1.2.1.1 border values classification
// ======================================
// classification of the border values; if the classification fails, the value becomes an outlier
// (trusted values above the separator_barrier will also be included)
for (v_ind= v_start_ind; v_ind <= v_stop_ind; v_ind+= 2) {
// !!! => skip values between borders <= !!!
if (v_ind == v_start_ind + BORDER_WIDTH) v_ind= v_stop_ind - BORDER_WIDTH + 2;
// current value
v_val= v[v_ind];
// begin filter: check immediate neighborhood for unreliable values
// - current element
if (((v[v_ind] & LSB) == UNRELIABLE)) continue;
// - element in front the current element
if ((v_ind < v_stop_ind) && ((v[v_ind + 1] & LSB) == UNRELIABLE)) continue;
// - element at the back of the current element
if ((v_ind > v_start_ind) && ((v[v_ind - 1] & LSB) == UNRELIABLE)) continue;
// end filter: check immediate neighborhood for unreliable values
// check whether the current value belongs to a cluster
// !!! use the same C_OPT as in sequence printer !!!
if (classifier (z, v_val, ind, center, C_OPT_3)) {
// original data
//P _pd(v_ind);_ps("\t");_pd(v[v_ind]);
// no modification of the raw data
// $$$$$$$$$$$$$$$
// v[v_ind]= center;
// modified data
//P _ps("\t");_pdln(v[v_ind]);
} else {
// the first HIGH of the sequence is too insecure to produce a useful outlier
if (v_ind > 1) {
// the nearest category is not near enough -> outlier
//P _pd(v_ind);_ps("\t");_pd(v[v_ind]);_ps("\t");_psln(F("border outlier"));
// the current value is an outlier, because it does not belong to any known cluster
if (z.outlier_size >= NO) {
//E _psln(F("too many outliers !!!)"));
rc= CRC_5;
return;
}
z.outlier_ind[z.outlier_size++]= v_ind;
}
}
}
//P _psln("");
/*PP
if (z.outlier_size > 0) _psln(F("outliers (borders included)"));
for (o_ind= 0; o_ind < z.outlier_size; o_ind++) {_ps("\t");_pd(z.outlier_ind[o_ind]);_ps("\t");_pdln(v[z.outlier_ind[o_ind]]);}
*/
// 2.1.2.1.2 border outlier aggregation: L1 aggregs
// ====================================
// aggregation of outlier values to “mini clusters” of at least 3 values;
// these aggregated outliers are removed from the list of outliers
// L1 aggregs are clusters found after clustering because of the border zones
// use same MIN_SIZE= 3 as in clustering
aggregator (z, v, MIN_SIZE, rc); // (L1 aggreg)
z.aggreg_size_1= z.aggreg_size_2;
if (rc > CRC_0) return;
// eliminate aggregated outliers
o_ind= 0;
for (int k= 0; k < z.outlier_size; k++) {
v_ind= z.outlier_ind[k];
//P _pd(v_ind);_ps("\t");_pdln(v[v_ind]);
// find the nearest cluster of v[v_ind]
// !!! use the same C_OPT as in border values classification !!!
if (!classifier (z, v[v_ind], ind, center, C_OPT_3)) {
z.outlier_ind[o_ind++]= z.outlier_ind[k];
}
}
z.outlier_size= o_ind;
// 2.1.2.2 Cluster-Classification: identification of a separator barrier
// ******************************
// identification of a sufficiently large gap between or above outliers (separator_barrier), separating ordinary values
// separating ordinary values from top values, which will “by virtue of their size” be treated as reliable
v_old_barrier= 0;
// initially the barrier is set to the highest cluster ceil
v_new_barrier= z.cluster_ceil[z.cluster_size - 1];
while (v_new_barrier > v_old_barrier) {
v_old_barrier= v_new_barrier;
v_new_barrier= 0;
// z.separator_barrier == CEIL : the sequence has no top values
// ensure: new z.separator_barrier <= CEIL
if (v_old_barrier < (CEIL_U/10)) z.separator_barrier= 10 * v_old_barrier;
else z.separator_barrier= CEIL_U;
// _ps(F("!!! z.separator_barrier : "));_ps("\t");_pdln(z.separator_barrier);
for (o_ind= 0; o_ind < z.outlier_size; o_ind++) {
v_val= v[z.outlier_ind[o_ind]];
if (v_val < z.separator_barrier) {
// increase the separator_barrier
if (v_val > v_new_barrier) v_new_barrier= v_val;
}
// else: v_val is an order of magnitude higher than everything met so far
// in this case the separator_barrier is not increased
}
// _ps(F("!!! v_new_barrier : "));_ps("\t");_pdln(v_new_barrier);
}
// _ps(F("separator_barrier:"));_ps("\t");_pdln(z.separator_barrier);
// 2.1.2.3 Sort Outlier Indices
// ****************************
// allows later to merge outliers and process outlier pairs
// this is the only place where sort is invoked (except statistics)
sort(z.outlier_ind, z.outlier_size);
/*PP
_psln(F("outliers sorted:"));
for (o_ind= 0; o_ind < z.outlier_size; o_ind++) {_pd(z.outlier_ind[o_ind]);_ps("\t");}_psln("");
*/
} // END Post-Clustering
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
}
// END CLUSTERER
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void corrector (
categories z[], // IO result of clustering process (categories of 1: HIGH- and 2: LOW- durations)
uint16_t v[], // IO flagged raw data value sequence: [odd indices]: HIGH-durations, [even indices]: LOW-durations
uint16_t v_length, // I number of signal durations: HIGH- plus LOW- durations (without end markers)
uint16_t unreliable_count, // I number of unreliable values in the sequence
uint8_t &rc, // O return_code (0: no error)
uint16_t m_outlier_ind[] // X buffer: merged outliers (merged HIGH- and LOW- outliers)
) {
// ************* //
// 2.2 CORRECTOR // of Outliers and Untrusted Subsequences
// ************* //
// 2.2.1 Outlier Correction: correction of reliable outliers identified by the clusterer
// 2.2.1.1 reliable top-values preprocessing
// top-outliers, above the separator barrier, are aggregated to clusters, but remain in the list of outliers
// 2.2.1.2 outlier separation
// - false outliers: can be corrected and attributed to a cluster; they are removed from the list of outliers
// - true outliers: resist correction and will be aggregated (level 1 aggregs); they remain in the list of outliers
// 2.2.1.3 resistant outlier aggregation
// 2.2.2 Untrusted Subsequences Correction: correction of unreliable values identified by the recorder
// 2.2.2.1 unreliable top-values preprocessing
// unreliable top-values, above the separator barrier, are added to the outliers and aggregated on the fly
// 2.2.2.2 check for best-fit approximation
// the remaining values are approximated by the nearest cluster center:
// in absence of jumps, a “best-fit” is applied individually on each value of the untrusted subsequence
// 2.2.2.3 check for jump elimination
// triplets comprising macro spikes or macro drops are resorbed:
// 3 consecutive values are reduced to 1 value, followed by 2 zero durations
uint16_t v_start_ind; // start index of v[] (included)
uint16_t v_stop_ind; // stop index of v[] (included)
rc= CRC_0;
if ((z[HIGH].cluster_size == 0) || (z[HIGH].cluster_size == 0)) {
//E _psln(F("no cluster !!!)"));
rc= CRC_7;
return;
}
v_start_ind= 1;
v_stop_ind= v_length;
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// ++++++++++++++++++++++++ //
// 2.2.1 Outlier Correction // correction of reliable outliers identified by the clusterer
// ++++++++++++++++++++++++ //
// 2.2.1.1 reliable top-values preprocessing
// top-outliers, above the separator barrier, are aggregated to clusters, but remain in the list of outliers
// 2.2.1.2 outlier separation
// - false outliers: can be corrected and attributed to a cluster; they are removed from the list of outliers
// - true outliers: resist correction and will be aggregated (level 1 aggregs); they remain in the list of outliers
// 2.2.1.3 resistant outlier aggregation
if ((z[HIGH].outlier_size > 0) || (z[LOW].outlier_size > 0)) {
/*PP
_psln("");
_psln(F("Outlier Correction"));
_psln(F("=================="));
*/
int8_t m_ind; // index of merged outliers (int8_t NOT uint8_t !)
// uint16_t m_outlier_ind[NM]; // merged outliers (from HIGH and LOW)
uint8_t m_outlier_size;// merged outlier size
uint8_t cat_ind; // index of current category (dummy parameter)
uint16_t curr_center; // cluster center of current value
uint16_t prev_center; // cluster center of preceding value
uint16_t next_center; // cluster center of following value
int32_t t_center_sum; // sum of centers in the subsequence
uint16_t curr_v_ind; // index of current value
uint16_t prev_v_ind; // index of preceding value
uint16_t next_v_ind; // index of following value
int32_t v_sum; // total sum of all values in the subsequence
uint16_t rel_delta; // the relative rel_delta (per thousand)
uint16_t rel_delta_cor; // correctable rel_delta
uint16_t rel_delta_max; // maximum relative delta during correction (trustworthiness of the final result)
bool flag;
rel_delta_max= 0;
// merge HIGH and LOW outlier_ind[] (both are sorted!)
// --------------------------------
if ((z[HIGH].outlier_size + z[LOW].outlier_size) > NM) {
//E _psln(F("merged outlier size error (should never occur !!!)"));
rc= CRC_16;
return;
}
merge (z[HIGH].outlier_ind, z[HIGH].outlier_size, z[LOW].outlier_ind, z[LOW].outlier_size, m_outlier_ind, m_outlier_size);
if (m_outlier_size == 0) return;
///*PP
_ps(F("outlier indices :"));