-
Notifications
You must be signed in to change notification settings - Fork 161
/
ppo_agent.py
555 lines (500 loc) · 26.3 KB
/
ppo_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import time
from collections import deque, defaultdict
from copy import copy
import numpy as np
import psutil
import tensorflow as tf
from mpi4py import MPI
from baselines import logger
import tf_util
from recorder import Recorder
from utils import explained_variance
from console_util import fmt_row
from mpi_util import MpiAdamOptimizer, RunningMeanStd, sync_from_root
NO_STATES = ['NO_STATES']
class SemicolonList(list):
def __str__(self):
return '['+';'.join([str(x) for x in self])+']'
class InteractionState(object):
"""
Parts of the PPOAgent's state that are based on interaction with a single batch of envs
"""
def __init__(self, ob_space, ac_space, nsteps, gamma, venvs, stochpol, comm):
self.lump_stride = venvs[0].num_envs
self.venvs = venvs
assert all(venv.num_envs == self.lump_stride for venv in self.venvs[1:]), 'All venvs should have the same num_envs'
self.nlump = len(venvs)
nenvs = self.nenvs = self.nlump * self.lump_stride
self.reset_counter = 0
self.env_results = [None] * self.nlump
self.buf_vpreds_int = np.zeros((nenvs, nsteps), np.float32)
self.buf_vpreds_ext = np.zeros((nenvs, nsteps), np.float32)
self.buf_nlps = np.zeros((nenvs, nsteps), np.float32)
self.buf_advs = np.zeros((nenvs, nsteps), np.float32)
self.buf_advs_int = np.zeros((nenvs, nsteps), np.float32)
self.buf_advs_ext = np.zeros((nenvs, nsteps), np.float32)
self.buf_rews_int = np.zeros((nenvs, nsteps), np.float32)
self.buf_rews_ext = np.zeros((nenvs, nsteps), np.float32)
self.buf_acs = np.zeros((nenvs, nsteps, *ac_space.shape), ac_space.dtype)
self.buf_obs = { k: np.zeros(
[nenvs, nsteps] + stochpol.ph_ob[k].shape.as_list()[2:],
dtype=stochpol.ph_ob_dtypes[k])
for k in stochpol.ph_ob_keys }
self.buf_ob_last = { k: self.buf_obs[k][:, 0, ...].copy() for k in stochpol.ph_ob_keys }
self.buf_epinfos = [{} for _ in range(self.nenvs)]
self.buf_news = np.zeros((nenvs, nsteps), np.float32)
self.buf_ent = np.zeros((nenvs, nsteps), np.float32)
self.mem_state = stochpol.initial_state(nenvs)
self.seg_init_mem_state = copy(self.mem_state) # Memory state at beginning of segment of timesteps
self.rff_int = RewardForwardFilter(gamma)
self.rff_rms_int = RunningMeanStd(comm=comm, use_mpi=True)
self.buf_new_last = self.buf_news[:, 0, ...].copy()
self.buf_vpred_int_last = self.buf_vpreds_int[:, 0, ...].copy()
self.buf_vpred_ext_last = self.buf_vpreds_ext[:, 0, ...].copy()
self.step_count = 0 # counts number of timesteps that you've interacted with this set of environments
self.t_last_update = time.time()
self.statlists = defaultdict(lambda : deque([], maxlen=100)) # Count other stats, e.g. optimizer outputs
self.stats = defaultdict(float) # Count episodes and timesteps
self.stats['epcount'] = 0
self.stats['n_updates'] = 0
self.stats['tcount'] = 0
def close(self):
for venv in self.venvs:
venv.close()
def dict_gather(comm, d, op='mean'):
if comm is None: return d
alldicts = comm.allgather(d)
size = comm.Get_size()
k2li = defaultdict(list)
for d in alldicts:
for (k,v) in d.items():
k2li[k].append(v)
result = {}
for (k,li) in k2li.items():
if op=='mean':
result[k] = np.mean(li, axis=0)
elif op=='sum':
result[k] = np.sum(li, axis=0)
elif op=="max":
result[k] = np.max(li, axis=0)
else:
assert 0, op
return result
class PpoAgent(object):
envs = None
def __init__(self, *, scope,
ob_space, ac_space,
stochpol_fn,
nsteps, nepochs=4, nminibatches=1,
gamma=0.99,
gamma_ext=0.99,
lam=0.95,
ent_coef=0,
cliprange=0.2,
max_grad_norm=1.0,
vf_coef=1.0,
lr=30e-5,
adam_hps=None,
testing=False,
comm=None, comm_train=None, use_news=False,
update_ob_stats_every_step=True,
int_coeff=None,
ext_coeff=None,
):
self.lr = lr
self.ext_coeff = ext_coeff
self.int_coeff = int_coeff
self.use_news = use_news
self.update_ob_stats_every_step = update_ob_stats_every_step
self.abs_scope = (tf.get_variable_scope().name + '/' + scope).lstrip('/')
self.testing = testing
self.comm_log = MPI.COMM_SELF
if comm is not None and comm.Get_size() > 1:
self.comm_log = comm
assert not testing or comm.Get_rank() != 0, "Worker number zero can't be testing"
if comm_train is not None:
self.comm_train, self.comm_train_size = comm_train, comm_train.Get_size()
else:
self.comm_train, self.comm_train_size = self.comm_log, self.comm_log.Get_size()
self.is_log_leader = self.comm_log.Get_rank()==0
self.is_train_leader = self.comm_train.Get_rank()==0
with tf.variable_scope(scope):
self.best_ret = -np.inf
self.local_best_ret = - np.inf
self.rooms = []
self.local_rooms = []
self.scores = []
self.ob_space = ob_space
self.ac_space = ac_space
self.stochpol = stochpol_fn()
self.nepochs = nepochs
self.cliprange = cliprange
self.nsteps = nsteps
self.nminibatches = nminibatches
self.gamma = gamma
self.gamma_ext = gamma_ext
self.lam = lam
self.adam_hps = adam_hps or dict()
self.ph_adv = tf.placeholder(tf.float32, [None, None])
self.ph_ret_int = tf.placeholder(tf.float32, [None, None])
self.ph_ret_ext = tf.placeholder(tf.float32, [None, None])
self.ph_oldnlp = tf.placeholder(tf.float32, [None, None])
self.ph_oldvpred = tf.placeholder(tf.float32, [None, None])
self.ph_lr = tf.placeholder(tf.float32, [])
self.ph_lr_pred = tf.placeholder(tf.float32, [])
self.ph_cliprange = tf.placeholder(tf.float32, [])
#Define loss.
neglogpac = self.stochpol.pd_opt.neglogp(self.stochpol.ph_ac)
entropy = tf.reduce_mean(self.stochpol.pd_opt.entropy())
vf_loss_int = (0.5 * vf_coef) * tf.reduce_mean(tf.square(self.stochpol.vpred_int_opt - self.ph_ret_int))
vf_loss_ext = (0.5 * vf_coef) * tf.reduce_mean(tf.square(self.stochpol.vpred_ext_opt - self.ph_ret_ext))
vf_loss = vf_loss_int + vf_loss_ext
ratio = tf.exp(self.ph_oldnlp - neglogpac) # p_new / p_old
negadv = - self.ph_adv
pg_losses1 = negadv * ratio
pg_losses2 = negadv * tf.clip_by_value(ratio, 1.0 - self.ph_cliprange, 1.0 + self.ph_cliprange)
pg_loss = tf.reduce_mean(tf.maximum(pg_losses1, pg_losses2))
ent_loss = (- ent_coef) * entropy
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - self.ph_oldnlp))
maxkl = .5 * tf.reduce_max(tf.square(neglogpac - self.ph_oldnlp))
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), self.ph_cliprange)))
loss = pg_loss + ent_loss + vf_loss + self.stochpol.aux_loss
#Create optimizer.
params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.abs_scope)
logger.info("PPO: using MpiAdamOptimizer connected to %i peers" % self.comm_train_size)
trainer = MpiAdamOptimizer(self.comm_train, learning_rate=self.ph_lr, **self.adam_hps)
grads_and_vars = trainer.compute_gradients(loss, params)
grads, vars = zip(*grads_and_vars)
if max_grad_norm:
_, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
global_grad_norm = tf.global_norm(grads)
grads_and_vars = list(zip(grads, vars))
self._train = trainer.apply_gradients(grads_and_vars)
#Quantities for reporting.
self._losses = [loss, pg_loss, vf_loss, entropy, clipfrac, approxkl, maxkl, self.stochpol.aux_loss,
self.stochpol.feat_var, self.stochpol.max_feat, global_grad_norm]
self.loss_names = ['tot', 'pg', 'vf', 'ent', 'clipfrac', 'approxkl', 'maxkl', "auxloss", "featvar",
"maxfeat", "gradnorm"]
self.I = None
self.disable_policy_update = None
allvars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.abs_scope)
if self.is_log_leader:
tf_util.display_var_info(allvars)
tf.get_default_session().run(tf.variables_initializer(allvars))
sync_from_root(tf.get_default_session(), allvars) #Syncs initialization across mpi workers.
self.t0 = time.time()
self.global_tcount = 0
def start_interaction(self, venvs, disable_policy_update=False):
self.I = InteractionState(ob_space=self.ob_space, ac_space=self.ac_space,
nsteps=self.nsteps, gamma=self.gamma,
venvs=venvs, stochpol=self.stochpol, comm=self.comm_train)
self.disable_policy_update = disable_policy_update
self.recorder = Recorder(nenvs=self.I.nenvs, score_multiple=venvs[0].score_multiple)
def collect_random_statistics(self, num_timesteps):
#Initializes observation normalization with data from random agent.
all_ob = []
for lump in range(self.I.nlump):
all_ob.append(self.I.venvs[lump].reset())
for step in range(num_timesteps):
for lump in range(self.I.nlump):
acs = np.random.randint(low=0, high=self.ac_space.n, size=(self.I.lump_stride,))
self.I.venvs[lump].step_async(acs)
ob, _, _, _ = self.I.venvs[lump].step_wait()
all_ob.append(ob)
if len(all_ob) % (128 * self.I.nlump) == 0:
ob_ = np.asarray(all_ob).astype(np.float32).reshape((-1, *self.ob_space.shape))
self.stochpol.ob_rms.update(ob_[:,:,:,-1:])
all_ob.clear()
def stop_interaction(self):
self.I.close()
self.I = None
@logger.profile("update")
def update(self):
#Some logic gathering best ret, rooms etc using MPI.
temp = sum(MPI.COMM_WORLD.allgather(self.local_rooms), [])
temp = sorted(list(set(temp)))
self.rooms = temp
temp = sum(MPI.COMM_WORLD.allgather(self.scores), [])
temp = sorted(list(set(temp)))
self.scores = temp
temp = sum(MPI.COMM_WORLD.allgather([self.local_best_ret]), [])
self.best_ret = max(temp)
eprews = MPI.COMM_WORLD.allgather(np.mean(list(self.I.statlists["eprew"])))
local_best_rets = MPI.COMM_WORLD.allgather(self.local_best_ret)
n_rooms = sum(MPI.COMM_WORLD.allgather([len(self.local_rooms)]), [])
if MPI.COMM_WORLD.Get_rank() == 0:
logger.info(f"Rooms visited {self.rooms}")
logger.info(f"Best return {self.best_ret}")
logger.info(f"Best local return {sorted(local_best_rets)}")
logger.info(f"eprews {sorted(eprews)}")
logger.info(f"n_rooms {sorted(n_rooms)}")
logger.info(f"Extrinsic coefficient {self.ext_coeff}")
logger.info(f"Gamma {self.gamma}")
logger.info(f"Gamma ext {self.gamma_ext}")
logger.info(f"All scores {sorted(self.scores)}")
#Normalize intrinsic rewards.
rffs_int = np.array([self.I.rff_int.update(rew) for rew in self.I.buf_rews_int.T])
self.I.rff_rms_int.update(rffs_int.ravel())
rews_int = self.I.buf_rews_int / np.sqrt(self.I.rff_rms_int.var)
self.mean_int_rew = np.mean(rews_int)
self.max_int_rew = np.max(rews_int)
#Don't normalize extrinsic rewards.
rews_ext = self.I.buf_rews_ext
rewmean, rewstd, rewmax = self.I.buf_rews_int.mean(), self.I.buf_rews_int.std(), np.max(self.I.buf_rews_int)
#Calculate intrinsic returns and advantages.
lastgaelam = 0
for t in range(self.nsteps-1, -1, -1): # nsteps-2 ... 0
if self.use_news:
nextnew = self.I.buf_news[:, t + 1] if t + 1 < self.nsteps else self.I.buf_new_last
else:
nextnew = 0.0 #No dones for intrinsic reward.
nextvals = self.I.buf_vpreds_int[:, t + 1] if t + 1 < self.nsteps else self.I.buf_vpred_int_last
nextnotnew = 1 - nextnew
delta = rews_int[:, t] + self.gamma * nextvals * nextnotnew - self.I.buf_vpreds_int[:, t]
self.I.buf_advs_int[:, t] = lastgaelam = delta + self.gamma * self.lam * nextnotnew * lastgaelam
rets_int = self.I.buf_advs_int + self.I.buf_vpreds_int
#Calculate extrinsic returns and advantages.
lastgaelam = 0
for t in range(self.nsteps-1, -1, -1): # nsteps-2 ... 0
nextnew = self.I.buf_news[:, t + 1] if t + 1 < self.nsteps else self.I.buf_new_last
#Use dones for extrinsic reward.
nextvals = self.I.buf_vpreds_ext[:, t + 1] if t + 1 < self.nsteps else self.I.buf_vpred_ext_last
nextnotnew = 1 - nextnew
delta = rews_ext[:, t] + self.gamma_ext * nextvals * nextnotnew - self.I.buf_vpreds_ext[:, t]
self.I.buf_advs_ext[:, t] = lastgaelam = delta + self.gamma_ext * self.lam * nextnotnew * lastgaelam
rets_ext = self.I.buf_advs_ext + self.I.buf_vpreds_ext
#Combine the extrinsic and intrinsic advantages.
self.I.buf_advs = self.int_coeff*self.I.buf_advs_int + self.ext_coeff*self.I.buf_advs_ext
#Collects info for reporting.
info = dict(
advmean = self.I.buf_advs.mean(),
advstd = self.I.buf_advs.std(),
retintmean = rets_int.mean(), # previously retmean
retintstd = rets_int.std(), # previously retstd
retextmean = rets_ext.mean(), # previously not there
retextstd = rets_ext.std(), # previously not there
rewintmean_unnorm = rewmean, # previously rewmean
rewintmax_unnorm = rewmax, # previously not there
rewintmean_norm = self.mean_int_rew, # previously rewintmean
rewintmax_norm = self.max_int_rew, # previously rewintmax
rewintstd_unnorm = rewstd, # previously rewstd
vpredintmean = self.I.buf_vpreds_int.mean(), # previously vpredmean
vpredintstd = self.I.buf_vpreds_int.std(), # previously vrpedstd
vpredextmean = self.I.buf_vpreds_ext.mean(), # previously not there
vpredextstd = self.I.buf_vpreds_ext.std(), # previously not there
ev_int = np.clip(explained_variance(self.I.buf_vpreds_int.ravel(), rets_int.ravel()), -1, None),
ev_ext = np.clip(explained_variance(self.I.buf_vpreds_ext.ravel(), rets_ext.ravel()), -1, None),
rooms = SemicolonList(self.rooms),
n_rooms = len(self.rooms),
best_ret = self.best_ret,
reset_counter = self.I.reset_counter
)
info[f'mem_available'] = psutil.virtual_memory().available
to_record = {'acs': self.I.buf_acs,
'rews_int': self.I.buf_rews_int,
'rews_int_norm': rews_int,
'rews_ext': self.I.buf_rews_ext,
'vpred_int': self.I.buf_vpreds_int,
'vpred_ext': self.I.buf_vpreds_ext,
'adv_int': self.I.buf_advs_int,
'adv_ext': self.I.buf_advs_ext,
'ent': self.I.buf_ent,
'ret_int': rets_int,
'ret_ext': rets_ext,
}
if self.I.venvs[0].record_obs:
to_record['obs'] = self.I.buf_obs[None]
self.recorder.record(bufs=to_record,
infos=self.I.buf_epinfos)
#Create feeddict for optimization.
envsperbatch = self.I.nenvs // self.nminibatches
ph_buf = [
(self.stochpol.ph_ac, self.I.buf_acs),
(self.ph_ret_int, rets_int),
(self.ph_ret_ext, rets_ext),
(self.ph_oldnlp, self.I.buf_nlps),
(self.ph_adv, self.I.buf_advs),
]
if self.I.mem_state is not NO_STATES:
ph_buf.extend([
(self.stochpol.ph_istate, self.I.seg_init_mem_state),
(self.stochpol.ph_new, self.I.buf_news),
])
verbose = True
if verbose and self.is_log_leader:
samples = np.prod(self.I.buf_advs.shape)
logger.info("buffer shape %s, samples_per_mpi=%i, mini_per_mpi=%i, samples=%i, mini=%i " % (
str(self.I.buf_advs.shape),
samples, samples//self.nminibatches,
samples*self.comm_train_size, samples*self.comm_train_size//self.nminibatches))
logger.info(" "*6 + fmt_row(13, self.loss_names))
epoch = 0
start = 0
#Optimizes on current data for several epochs.
while epoch < self.nepochs:
end = start + envsperbatch
mbenvinds = slice(start, end, None)
fd = {ph : buf[mbenvinds] for (ph, buf) in ph_buf}
fd.update({self.ph_lr : self.lr, self.ph_cliprange : self.cliprange})
fd[self.stochpol.ph_ob[None]] = np.concatenate([self.I.buf_obs[None][mbenvinds], self.I.buf_ob_last[None][mbenvinds, None]], 1)
assert list(fd[self.stochpol.ph_ob[None]].shape) == [self.I.nenvs//self.nminibatches, self.nsteps + 1] + list(self.ob_space.shape), \
[fd[self.stochpol.ph_ob[None]].shape, [self.I.nenvs//self.nminibatches, self.nsteps + 1] + list(self.ob_space.shape)]
fd.update({self.stochpol.ph_mean:self.stochpol.ob_rms.mean, self.stochpol.ph_std:self.stochpol.ob_rms.var**0.5})
ret = tf.get_default_session().run(self._losses+[self._train], feed_dict=fd)[:-1]
if not self.testing:
lossdict = dict(zip([n for n in self.loss_names], ret), axis=0)
else:
lossdict = {}
#Synchronize the lossdict across mpi processes, otherwise weights may be rolled back on one process but not another.
_maxkl = lossdict.pop('maxkl')
lossdict = dict_gather(self.comm_train, lossdict, op='mean')
maxmaxkl = dict_gather(self.comm_train, {"maxkl":_maxkl}, op='max')
lossdict["maxkl"] = maxmaxkl["maxkl"]
if verbose and self.is_log_leader:
logger.info("%i:%03i %s" % (epoch, start, fmt_row(13, [lossdict[n] for n in self.loss_names])))
start += envsperbatch
if start == self.I.nenvs:
epoch += 1
start = 0
if self.is_train_leader:
self.I.stats["n_updates"] += 1
info.update([('opt_'+n, lossdict[n]) for n in self.loss_names])
tnow = time.time()
info['tps'] = self.nsteps * self.I.nenvs / (tnow - self.I.t_last_update)
info['time_elapsed'] = time.time() - self.t0
self.I.t_last_update = tnow
self.stochpol.update_normalization( # Necessary for continuous control tasks with odd obs ranges, only implemented in mlp policy,
ob=self.I.buf_obs # NOTE: not shared via MPI
)
return info
def env_step(self, l, acs):
self.I.venvs[l].step_async(acs)
self.I.env_results[l] = None
def env_get(self, l):
"""
Get most recent (obs, rews, dones, infos) from vectorized environment
Using step_wait if necessary
"""
if self.I.step_count == 0: # On the zeroth step with a new venv, we need to call reset on the environment
ob = self.I.venvs[l].reset()
out = self.I.env_results[l] = (ob, None, np.ones(self.I.lump_stride, bool), {})
else:
if self.I.env_results[l] is None:
out = self.I.env_results[l] = self.I.venvs[l].step_wait()
else:
out = self.I.env_results[l]
return out
@logger.profile("step")
def step(self):
#Does a rollout.
t = self.I.step_count % self.nsteps
epinfos = []
for l in range(self.I.nlump):
obs, prevrews, news, infos = self.env_get(l)
for env_pos_in_lump, info in enumerate(infos):
if 'episode' in info:
#Information like rooms visited is added to info on end of episode.
epinfos.append(info['episode'])
info_with_places = info['episode']
try:
info_with_places['places'] = info['episode']['visited_rooms']
except:
import ipdb; ipdb.set_trace()
self.I.buf_epinfos[env_pos_in_lump+l*self.I.lump_stride][t] = info_with_places
sli = slice(l * self.I.lump_stride, (l + 1) * self.I.lump_stride)
memsli = slice(None) if self.I.mem_state is NO_STATES else sli
dict_obs = self.stochpol.ensure_observation_is_dict(obs)
with logger.ProfileKV("policy_inference"):
#Calls the policy and value function on current observation.
acs, vpreds_int, vpreds_ext, nlps, self.I.mem_state[memsli], ent = self.stochpol.call(dict_obs, news, self.I.mem_state[memsli],
update_obs_stats=self.update_ob_stats_every_step)
self.env_step(l, acs)
#Update buffer with transition.
for k in self.stochpol.ph_ob_keys:
self.I.buf_obs[k][sli, t] = dict_obs[k]
self.I.buf_news[sli, t] = news
self.I.buf_vpreds_int[sli, t] = vpreds_int
self.I.buf_vpreds_ext[sli, t] = vpreds_ext
self.I.buf_nlps[sli, t] = nlps
self.I.buf_acs[sli, t] = acs
self.I.buf_ent[sli, t] = ent
if t > 0:
self.I.buf_rews_ext[sli, t-1] = prevrews
self.I.step_count += 1
if t == self.nsteps - 1 and not self.disable_policy_update:
#We need to take one extra step so every transition has a reward.
for l in range(self.I.nlump):
sli = slice(l * self.I.lump_stride, (l + 1) * self.I.lump_stride)
memsli = slice(None) if self.I.mem_state is NO_STATES else sli
nextobs, rews, nextnews, _ = self.env_get(l)
dict_nextobs = self.stochpol.ensure_observation_is_dict(nextobs)
for k in self.stochpol.ph_ob_keys:
self.I.buf_ob_last[k][sli] = dict_nextobs[k]
self.I.buf_new_last[sli] = nextnews
with logger.ProfileKV("policy_inference"):
_, self.I.buf_vpred_int_last[sli], self.I.buf_vpred_ext_last[sli], _, _, _ = self.stochpol.call(dict_nextobs, nextnews, self.I.mem_state[memsli], update_obs_stats=False)
self.I.buf_rews_ext[sli, t] = rews
#Calcuate the intrinsic rewards for the rollout.
fd = {}
fd[self.stochpol.ph_ob[None]] = np.concatenate([self.I.buf_obs[None], self.I.buf_ob_last[None][:,None]], 1)
fd.update({self.stochpol.ph_mean: self.stochpol.ob_rms.mean,
self.stochpol.ph_std: self.stochpol.ob_rms.var ** 0.5})
fd[self.stochpol.ph_ac] = self.I.buf_acs
self.I.buf_rews_int[:] = tf.get_default_session().run(self.stochpol.int_rew, fd)
if not self.update_ob_stats_every_step:
#Update observation normalization parameters after the rollout is completed.
obs_ = self.I.buf_obs[None].astype(np.float32)
self.stochpol.ob_rms.update(obs_.reshape((-1, *obs_.shape[2:]))[:,:,:,-1:])
if not self.testing:
update_info = self.update()
else:
update_info = {}
self.I.seg_init_mem_state = copy(self.I.mem_state)
global_i_stats = dict_gather(self.comm_log, self.I.stats, op='sum')
global_deque_mean = dict_gather(self.comm_log, { n : np.mean(dvs) for n,dvs in self.I.statlists.items() }, op='mean')
update_info.update(global_i_stats)
update_info.update(global_deque_mean)
self.global_tcount = global_i_stats['tcount']
for infos_ in self.I.buf_epinfos:
infos_.clear()
else:
update_info = {}
#Some reporting logic.
for epinfo in epinfos:
if self.testing:
self.I.statlists['eprew_test'].append(epinfo['r'])
self.I.statlists['eplen_test'].append(epinfo['l'])
else:
if "visited_rooms" in epinfo:
self.local_rooms += list(epinfo["visited_rooms"])
self.local_rooms = sorted(list(set(self.local_rooms)))
score_multiple = self.I.venvs[0].score_multiple
if score_multiple is None:
score_multiple = 1000
rounded_score = int(epinfo["r"] / score_multiple) * score_multiple
self.scores.append(rounded_score)
self.scores = sorted(list(set(self.scores)))
self.I.statlists['eprooms'].append(len(epinfo["visited_rooms"]))
self.I.statlists['eprew'].append(epinfo['r'])
if self.local_best_ret is None:
self.local_best_ret = epinfo["r"]
elif epinfo["r"] > self.local_best_ret:
self.local_best_ret = epinfo["r"]
self.I.statlists['eplen'].append(epinfo['l'])
self.I.stats['epcount'] += 1
self.I.stats['tcount'] += epinfo['l']
self.I.stats['rewtotal'] += epinfo['r']
# self.I.stats["best_ext_ret"] = self.best_ret
return {'update' : update_info}
class RewardForwardFilter(object):
def __init__(self, gamma):
self.rewems = None
self.gamma = gamma
def update(self, rews):
if self.rewems is None:
self.rewems = rews
else:
self.rewems = self.rewems * self.gamma + rews
return self.rewems
def flatten_lists(listoflists):
return [el for list_ in listoflists for el in list_]