-
Notifications
You must be signed in to change notification settings - Fork 10
/
BMI-746.txt
858 lines (701 loc) · 11.9 KB
/
BMI-746.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
. ~ > -
! o : ! o ( s
- % a P -
- g~ -y
- - - W hise St Tl &
4 . : 1
B
. N
- , -
N
: it ”
-
. s "
ve e
- — ) - |
-~ |
i .
{
- - . {
x - B
- " . X
- .
- o . F -
¢ .
L N S T3 %
:
. - r
~ .
Sy -
- W - B
. »
. -
—— :
{
e ,
- > -
»
s : SO # & A
- :
. . -
. & "
\ P [ 1
|
|
|
- [ A - -
e ! | ! _
| .
|
|
- .
] - 4
| >
|
- |
ol
)
.
| .
| -
. . | - .
X |
-
~— | . P
|
1
- -r.,
| .
{
|
£ *
SE( ,h}
INTRODUC TION
x}‘uf h()llluxrl‘.(a U LA ‘.l‘llllfi~‘ 1€l reactor .A‘\‘)(‘lr\ to ollie i)['!'!lll.l‘
of efficient breeding and power generagtion, at a reasonable cost, However,
homogeneous reactors using water solutions of the fissionable material
cannot operate advantageously at high temperatures without the disadvantage
of very high pressures, Another class of fluids, the alkali metal hydroxides,
have a number of the attractive [eatures of water and will permit high-
temperature operation al low pressures,
’
The advantages of NaOH are a low ma iting point (605 F), satisfactory
nuclear properties, and favorable heat-transfer characteristics Because
of their smaller absorption cross scctions, LAa'"OH and Li'OD would appear
better for breeder application, although their melting points (~84. F) ar
higher than that of NaOH, and hittle 13 known of their chemical behavior,
Nhese factors
SURRest that a homogeneous breeder reactor using an alkali metal hvdroxide
solution might be feasible,
'he work rc';»wr!(‘.! here was undertaken to determine whether
a re
actor of this type 1y \.\".”llc Of breeding,
(Ii'\l'H/\l (.\).\5ll)}.l{/\ll\“\.:‘
For the reflected pile, 1t was necessary to assume a container mals
tial, core temperature, and thermal barrier, [hese ass imptions can b
only partially justified, since complete prool would require extensive labo-
ratory work,
l.h(‘ Choice Oof 21 rconium as a core container 1s based on recent
rnsum(“) and \‘xrld---tn-m;ti.( ) tests performed at Battelle, In 24-hour cor-
rosion tests, zirconium and L-nickel showed lLittle attack by sodium
hydroxide at 1000 F
AT onlum, because of its small .\Pwurp!lnn Cross section, 18 mi
tive than nickelgas a separator hetween core and blanket
[he \H‘l(l ‘~trlh\'.t'h ol Foote zirconiun 1s 3000 pst oal WO F, which i1s
.
adequate for this apphication, By adding tour per cent tin, this can be an
creased ta 24,000 pPsi without increasing the cross sechion appri vy
e CORE |
SECRET
. 10.
Corrosion tests also indicated that at present none of the metals or
allovs tested were suitable caustic containers at 1500 F. These data made
it necessary to choose a core temperature of less than 1500 F, The tem-
perature used (1100 F) 1s a compromise between efficient power production
mnd severe corrosion,
[he use of heavy water as a reflector necessitates a low-reflector
temperature if high pressures are to be avoided, However, maintaining a
reflector temperature of 250 F requires a thermal barrier, Rough cal-
culations show that this barrier can be obtained by placing zirconium foil
in the dead-air space between the zirconium shells,
The feasibility of reactors using lithium hydroxide as a moderator is
dependent on large-scale production of highly enriched lithium 7,
useful as a moderator in a breeder,
o be
the amount of lithium 6 should not be
greater than 100 ppm,
BARE PILE
Bare-pile calculations for a homogeneous mixture of U¢ 33
and hy-
droxide were made as a quick
basis {or comparison ol various hydrn,\ulrs
as moderators, The standard two group —= one region equation was used,
Fhis equation assumes a continuous slowing-down process which 1s not
valid for a hydrogenous material, However, use of a modified age makes
the method sufficiently accurate for a preliminary feasibility study,
In calculatingr (Fernu age) {or the hydroxides,
it was assumed that
hydrogen behaves as it does in water,
Using a numerical integration method,
the hydrogen scattering cross section was adjusted to give the experimental
value ( r §3 cm*) for water, With the adjusted hydrogen cross seq tion,
a ssmilar calculation was made for NaOH and [h'OH, For the calculation
of r1.0p» the value ('U 132,.2 ¢m®) for heavy water was used, The re-
sults are Listed 1n Appendix |1
he values for p, the probability of escaping resonance capture,: and
¢« , the tast fission effect, were assumed equal to |,
SECRE]
Rl b i Ll b L ek e
i SECRET
| | R
The absorption cross sections for lithium, sodium, and hydrogen
were calculated for a temperature of 1100 F', assuming a 1 /v dependence,
Thermal values were taken {rom NBS 5), The scattering cross sections
for 0,074 ev were obtained {from Adal ). The scattering of uranium and
thorium was neglected in calculating macroscopic scattering cross sections,
Using the standard two group - one region method, calculations were
made for thorium-moderator mass ratios of zero and 0,2 with the thorium
homogeneously mixed in the core, The inclusion of thorium in the core was
proposed in the hope of obtaining sufficient internal breeding (BG = 0) to
replenish continuously the !ncl consumed, The net breeding gain was to be
obtained in a bhnhot. \
The three modontou. NaOH, u"on. Li’0OD, were considered,
The results of the criticality calculations are plotted in Figures i -« 3, Al-
though parasitic absorption is emaller in Li7OD than in the other moder-
ators, Figure 3 indicates that much larger critical radii are required in a
Li7OD-moderated pile, This is caused by the smaller slowing-down power
of the Li'OD, which permits a large number of fast neutrons to escape,
Therefore, a larger reactor is necessary to obtain sufficient moderation to
maintain crittcdlty.
For each point on the 20 per cent thorium-criticality curves, a breed-
ing ratio has been calculated, The breeding ratios have been plotted versus:
radius on their respective criticality curves, These data show that the
breeding ratios are less than 1 md, thus, all breeding gains are negative
since, by definition:
S e
BG=BR-1:=28__ .1, )
2
For a given radius, both a breeding ratio and a critical mass for the bare
pile may be obtained from Figures 1, 2, and 3, The results show that a
0.2 mass ratio of thorium to moderator in the core does not produce a
positive breeding gain, although it increases the fuel requirements by a
significant amount,
To evaluate further the possibilities of internal breeding, infinite
pile breeding gains were computed, To obtain these data, the follwlng
cquuom were solved simultaneously,
v-(l+t);.§.2
:I_‘ : (2)
BG =
‘lfch
” Nomenclature, ‘M L
e T~ S —— S S P
e S o SO
¥
.
e
o
+
gt m. kilogroms
.41 3
Radius, centimeters
Breeding Rotio Versus Rodius )
04
:
§ 02
) m—r. 70 80 100
Radius, centimeters
FIGURE |. CRITICALI Y AND BREEDING RATIO CURVES FOR A HOMOGE-
NEOUS U®-NaoOH MODERATED BARE PILE
SECRET
A-I1979
Moss u‘ou r
-~ Radivs, centimeters
) l l
Breeding Ratio Versus Rod
.Breading gain = breeding rotio~ |
- ' l |
— 80 0 100 120 140
Rodius centimeters
FIGURE 2. CRITICALITY AND BREEDING RATIO CURVES FOR A HOMOGE-
NEOUS U*™-LI"OH MODERATED BARE PILE ety
e
) | - . o - - v - i P —— ——— ——
_— 3 < - . A e
: z A .= S — . o e e _
§ . : T - -~ , .
¥ ! . ” - X : " . < - >
LS 3 ~ > .. . 2 . - |
- - - T % :
> , L § 2 . -
. - 3
o .
-~ ' -
- - 7 ) -
4 3 3 - -
v .
-— - " .
) ; 3
- . I
s - ] ¥ | -
5 - - A
. ’ : . - M ’
- - o . X
4 - g ~ . o
sy . |
- ! - |
’ S g - .
- —~ . .
¢ - ot ' 3 ’ 3 fi b . ] -
- . . . 2 - - |
- . o » E
. - - 3 - g "3 4
-~ » .
. . . : . : 3 :
- o ~ | Py - : ~ - I T
- o N |
. . - - T . . - o
" . : : : y =
- . ’ ' ] 2 i
- 4 - - $ . I
5 . . / '
- . » - < = x
¥
:
.
P
.
b
¥
L
e K T ——
L
v
- "
s .
s
p
ot |
e |
[
e |
| %
J
)
>
. I\|\
o~
'
.
> L
. A
i -
-
.
s
. -
-
|
- .
4 '. Y |
Y — ;
| |
- -
* . " |
¥ :
- —ye
I .
|
et LR el
-
[ «
— -
-
: ~
:
.
>
« .
o
5
L ¥
.
- - o -~ -
-
.
-
” - - -
-
“
.
'l : - L
t _ -
. v
o= + <
2 =SS L AEs S
— . .
. B - - e s My g b eI A P
Wh - [SrWART LIRS = M.-”n..n‘qhu0.\fl....mua"r.‘...,.\lfll’u.,..:: %
) - - - - - - - .
; % : :
o’
13 . 5 . . ;
3 .
o
- : :
- -
v
J . l :
. >
- ; , 0 |
. g z
: . »
- = ;
I : - -
RS .
: , _
. »
- ! , 1 2 ; .
; b -~ : i
-
& . _ ;
:
! : :
| : ‘ o ; | .
S
: ¥ 3 2 d
: .
” g / .
7
. - 2 . / Ry i
R » 3
. : |
.
2 3 . : / S _
: S .
o/ & ‘_
3 B : :
-
| “\ :
. : »
~ F ; | |
e
/
- -
-~
.
.
; f
« ; 2 -
.
-
% .
5 -
2 ‘
- o 3 g
: A . ..
. i » . - ]
i
: .
. -
.
? - .
A T " . 3
- | .
. .
- :
»
-
- .
» ) )
: 7 > .
. .
-
- b : |
.
- ° :
» - - :
; -
- »
! A
: : . -l -l
» ‘ £ .
\ .
" - . - i ey . A Lo
”. ; : r— . ~ . " . - - 5 o M .
3 . - = 4 - - = R -
- BT TR R - - TS > o2 v - A s (W s 0 AT -~ A ] ™ il F . > " r » - 5 " » i o 3 e s Call St » - po E = ———————————————— N ——— - -
A - . P
= - - .
% .
. .
- 2 2 '
» » -
- ® ° 2 . i -
$ * p
. i J »
» - o~ .
> 7 / : ;
- - \.. -
. J §
. ; -
Bkl “ % )
- - 3 - »
5
:
> “
-
;
L ]
~ X _ .
- - .. 2 .
' 4
. . \\. §
- :
: >
. . A ol
5 u: .
r -
. o e . .
- - €
’ » . -
’
: v - - .
w <
o ‘ : 4
. - M .
» S 0 : 2
: ) : - : »
: " | ;
- )
- i
¥ f
- . A |
v ) _
= S e W
- -~ -~ |
. . > ‘ ¥ . - * |
’ . g 4 S |
. 2 . . -
- ~ a0 - L4 .
2 : : -
: . : 5 : |
’ . . \ » . .
- > *
. - -
. N ~
1 . ) . )
b a ¥, \ y
K 5 -t
- - : N - & x ...w 3 v 4
: - 2 NSk e TP AR LT TRl OT R e > gy ISEYSE
= : - -2
i rwsaod [P SA TSt
- . . V.
- . : | 0 1
¢
. 4 3 5
: | ;
. y
. . ; ,11
- /N ;
: = 3
: % |
. ™
. o” r '
-
‘ : | 2 4 .
,
.
, :
| i
« ¥ . .
a
. ! | 1
: ' .
. \ ’ ‘
- fl /
- y
o o .. D
- 2 ' -
b
2"
#
Lo
v
8= - . - :
:7 B
.
: ) "
- < 4
. \ e —
L N~ -
~
} o . Y
-~ e
: olof/
Y S 5 & . N
2 . % ’ - 5 ”
- o . .
2 oy
- w ’
3 -
. - -
- -
.
. :
»
ad 5
7 - ey 4 -
: .
-
.
. .
: .
.
- - -~
-~
, . 3
.
.
. :
L4 .
.
.
. v &
- - -
1
§
.
o .
> I
|
- A
b |
-~ . %
| e *
- - w -
Lapean e
3 x -
4 - ° v
-
E
. v &
Breeding Goin
Breeding Gain
SECRET
0.4 ]
LI1"0D Moderotor !
| \
as}- oD : -
l /+/ AT [T
! |
o2} — . { i 4 4
i |
| / |
O.Ip— 4 : i ll 4 i |
v \ E
{ : |
0 I | |
4.4 46 4.0 5.0 5.2 5.4 56 58
Vs Mosse, kilogroms
04 \
. | B
LI'OH Moderotor | | |
| | ‘l l
0.3 4 L 4
e e
| "
oz} f
i
O} ' ‘ ‘
ag \ ] | | | JE
R X ) 27 28 29 30 LY 32
U™ Moss, kilogroms
FIGURE 8. BREEDING GAIN FOR Li"OH AND Li' OD REFLECTED
PILES
A-19012
4 .
y
-
- x
.
' ‘, .
’
a
4 4
®
; RN A )QM»".‘"A""W”.~ s R A . &1 e
e, o
: ' ' g geat A |
i : }
\ o - : ) 2 ”
\ ’ F, « . > - « v
i 3 .
o i S
: ¢ & } . . 7
A ) ) \
. £ ) 4 .
¢ 1
? ' 1% ‘
Fon E 3 ’
SECRET
.'zs-
”
APPENDIX 1
Nomenclature
a Macroscopic absorption cross section of thorium,
a = Macroscopic absorption cross section of uranium,
BR = Breeding ratio,
BG = Breeding gain,
e
it
L. = Macroscopic capture cross section of v,
i¢ = Macroscopic fission cross section of U233,
Sp = Macroscopic parasitic ablorption'crou section,
v = Neutrons/fission,
ES ]
n
T3#= = Neutrons produced per neutron absorbed in fissionable
material
R; = Nyop/Ny
R; = Npy/Ny
Molecules/cm?>,
2
[
Resonance escape probability,
Fast fission effect coefficient,
SECRET
Ja 2D
A -~ Core
(1)
(2)
(3)
(4)
SECRE ]
- Y
APPENDIX Il
n e ' 2,70 u 0.15
P |
' |
LiOH 120D NaOH D,0 -ThO,
114,5 cm® 457, 2 c¢m? 104, 1 cm® 132, 2 cm®
(l‘, B9 « n.’l 0,00714 \m'l - 0,0320 « !h-l
: : > 0,0155 ¢m~ !
2.159 cm 2.552 cm - 4. 311 cm
0,354 ¢cm 1,156 ¢m - 0.313 ¢cm
; 2 : 0, 207 cm®
0, 288 (.”.;-l 0.8B04 cm= 1 0,762 (nn'l -
Assumptions
Hydrogen scattering cross section in hydroxide is the same as in
water,
Uranium scattering cross section may be neglected in calcula-
- tions of r and Lz.
For fast neutrons, the molecules of NaOH appear as ''free"
atoms of sodium, oxygen, and hydrogen, The transport cross
secthon for each atom 1s computed and the average for the
molecule calculated,
For thermal neutrons, the value for transport cross section
was obtained by averaging the scattering cross section and
then using molecular weight for A in the equation
11.t - l's[l -.;_;]
SEC 52..’1‘