-
Notifications
You must be signed in to change notification settings - Fork 10
/
EIR-252.txt
1285 lines (873 loc) · 21.3 KB
/
EIR-252.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
EIR - Bericht Nr. 252
EIR-Bericht Nr. 252
Eidg. Institut flr Reaktorforschung Wirenlingen
Schweiz
Thorium, Uranium, other Metals and
Materials from Earth’'s Crust Rocks
M. Taube
Wiirenlingen, April 1974
Abstract
The general use of the rocks of the earth's c¢rust as a source
of nuclear energy (from thorium-uranium extracted with 30%
efficiency), and a source of metals {aluminium, iron ete.),
a source of ceramics {cement, glass, quartz) and other ma-
terials is discussed. The proposal is to use their source
to meet the needs of a future stable civilization requiring a
unit power production of some 20 kw per capita and source
material supply of 1 tonne per capita per year (additional to
recycling). The impact of this on the philosophy a reactor
development is also discussed.
I. General Iemargs
The aim of thie paper is to cubline and discuss the poasible
future sources and flows of energy in the next 50 to 200
vears, in the world as a whole, and more especlially in
Switzerland. It iz a conbinustion of the well known ides
of &, Weinberg of rooks burningt,
It can be debated that any numerical or guantitative evalu~
ations on these toplcs have 1little value at the present {ime,
but the author iz of the firm opinion that such an evalu=
ation could have an impact on the philoesophy of reactor deve-
lopment especislly in the gqualitative cholice of reactor type.
Since it seems to take some 20 years from paper studies o
full reactor operations {of a new type} and a further 30-HQ
years of 1ife, then the minimur tinme scale we ghould congi-
der i3 of the ordey of 50 yvears.
II. ¥World energy development, and the csse of Switzerland
It is well known thabt the number of prognoses for the future
development of cur civilization is egual to the number of
papers on the subject. Here the following sssumptions have
been made,
1. The world population increases conbinuously to 9=-10 x 109
people after 200 yvears and then reducss bto a 5tabla level
of 8 x 109 pecple {(for Switzerland - today & x lflfi pecple,
in the next 50 years 8 x 106 and then stablilization},.
The
The abundance of available energy sources is the mogst
important factor in the development of any civilization.
The regeneration of the natural environment is one of
the most important factors in considering the transfor-
mation of matter into energy.
Qur civilization achieves a steady state level in approx
200-250 years and this level will have the following
characteristics
- production of fresh materials (from ores ete.) would
be a factor 2-3 times lower than at present.
- recycling will, therefore, be greatly increased.
- the spectrum of material use will be drastically
altered.
- the free energy available for these needs will be
increased per capita mean by approx 10 times.
size of the fissile material requirement
The
for
calcualtions are made on the following basis:
1 MWA(t) E 1.1 g fissile nuclide (F.N.)
1 MWyear (e) 1.0 kg fissile nuclide (F.N.)
112
and therefore
e
400 ton FN
0.4 ton FN
1 TW(t) year
1 GW({t) year
1}
the far distant future, for the steady state case:
World:
8 Giga people x 20 kw per capita gives
160 TW{t) % 6L4'000 ton FN/year
4
Fig. 1 Energy Growth: World and Switzerland
8 — T 8
World Swiss
Population Population
Giga Mega Persons
Persons
- — |
Population
Q T e — T ; | 0
20
KW
per
Capita
1 G-
Energy Need
per Head
0 T T T I C——
200 - — 200
World Swiss
T-watts Gwatts
100 — T—100
Total Energy
Need
B T T T T i T
1970 2070 2170
Fig., 2 Development of new World Enerpgy
Sources in the Future
200 7
Energy
150 7
il
TW l(/r_
4// Sun/Satellite?
A
100 7. =TT |
T
Fmsipn
50 =
1970 2000
[ )
Switzerland:
8 Mega people x IZ2 kW per capita gives
0.1 TW{ty ¥ U0 ton FN/year
Por a period of leb ug say 1000 vears steady civilization
&
World regquirements: 68 x 107 ton FH
3
Swiss requirements: 40 x 107 ton FH
OF course the development of other energy sources will change
and may dramatically after the assumptions given above, bub
fig. & makes the arbitrary assumptions clear.
Here the asswuption of fission energy covers approx 173 of
all ensrgy needs and thus the dateg given above are too big
onliy by & factor 3 in the worst case.
I1T. Uranium=-Thorium sources in ores, granites and the sarbth's
crust
The most ilmportant assumption made here is that the Pission
enargy is the main scurce of free energy not only in the nsxt
century but alsc in later periods. AL present uranium is pe~
covered from bthe following ores.,
USA ores 1800 ppM
Canada ores 1100 ppM
South Africa ores 250 ppM
Other West Hemisphere ores 1940 ppM
Mean for West Hemisphere 820 ppM
It must be stressed that at the present time the "uranium
ores™ have a commercial value of approx. 203% per kg of USOB
even if the uranium contents equals only 250 ppM!
But as is well known the mean distribution of uranium and
thorium in the earths crust is approximatly 12 ppM for hoth
elements. The proportion of these fissicnable elements is
higher in the granites (typical continental rocks) and
reaches 50 ppM. In the basalts (typical oceanic rocks) it
is lower at about 1 ppM (see fig. 3).
Of course in the continental rocks there are some signifi-
cant accumulations of uranium and to save extent thorium. The
probable amounts of high and low grade ores are given in fig.
Y (rough estimates).
IV. Resources of other elements
An underlying feature of the arguments developed in this paper
is that the extraction of the fissionable nuclides U and Th
from the rocks of the earth's erust must be coupled with the
extraction of all the utilizable elements from these cources,
which must decrease the cost of the recovery of all appro-
priate elements,
2 of
Earth'is
Crust
100
3 Compméitimn of Earth's Crust
Barth's erust 16 km mean
0.4 of Zarth's mass
= 2.4 x 1019 ton
2
E
basalt is granite iz a
an oceanic continental rock
ook '
Uranium Ores Uranium Thorium con-
e s e s centbration
- : . ~1 2 ~50 ppM U + Th
50~ ~1000 pp¥ & )
sporadicaly
Dy
A0 &
20 - Il
L3
10 g
- . v |
Sediment (4%} =
ot
Carbonate ’
* . oo Maanny
Sand
104
$/ke
1000
500
200
100
50
20
Fig. Y
U + Th World Reserves
o
O
o
P
@
L) Basal
g (Gceanic)
O
o
0 .
X O Granlkes
E {(continental)
-
[P
0
o
=
-1 +
E
~
o
=
o
[
—
o
—t— ©
>
P
~
~
- The future world
g demand of U + Th
1 equals ~10°2 ion
per year (chp., III)
1000 Uranium .
some sedlments
‘ | I8 | | _ I | | | |
10° 107 10° 109 1010 101t 1012 113 (oY 4010
tons U + Th
10
In table 1 are given the sbundance of chemical 2lements in
the sarthts crust. OFf course there is some disagreement aboutb
tnis data in different referencez bub for our purposes the
influence of these uyncertainties is not great.
Fig. % shows the distribution of the most sbundant elements
{in the earth’s crust) versus the slectronegativity accor-
ding te Pauling and periodic table. This gives tne first in-
dication conecerning the thermodynamie stability of the possib-
le chemical compounds such as sllicates, alumosilicates and
30 DI,
We abttempt here to discuss the technical and energetical
fegtures of the industrisgl extractions of these components
of £he rocks in the fubure.
We can make a very simplified caleulation based on the
following:
Take first 1 ton of each of the today's commercially impor-
tant ores larbitrarily chozen) providing the following eleven
matals
Fe, 41, Cr, Mn, Ni, Cu, Zn, 3o, Ag, 8&u, b
totalling 11 ftons of ores.
Commercial ores today contain approx the following amountis
of metal
e 20%; AL 30%; Cr %0 %; Mn 20%; NI 1%; Cu 0.5%; Zn 4¥;
Sn 0,2%; Ppb 2% A 0.0%%; Au 0.,005%.
Table 1
1 ton
Number A Element
1 8 0
2 16 Si
3 13 Al
Yy 26 Fe
5 20 Ga
6 11 Na
7 19 K
8 12 Mg
9 22 Ti
10 1 H
11 15 P
12 25 Mn
13 9 r
14 56 Ba
15 38 Sr
16 16 5
17 6
18 4o Zr
19 23 v
20 24 Cr
Z = atomic number
(p =
466
277
M
o
H = = W W o\
11
2.8 kg/dm°) ~ 357 dm
kg*
Number
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
21
38
39
* Approx all metals for metallurgy
** Only partially for metallurgy
Other metals for ceramics ete.
Element abundance in Earth's Crust
>
Z Element
37 Rb g0
28 Ni 75
30 Zn 70
58 Ce 60
23 Cu 55
39 Y 33
57 La 30
60 Nd 28
27 Co 25
21 Se 22
7 N 20
41 Nb 20
3 Li 20
31 Ga 15
82 Pb 13
5 B 10
90 Th 10
50 Sn 3
Q2 u 2.4
80 Hg 0.08
78 Ft 0.01
Energy carriers
09 0
»+
0 03 09 O3 09 Q2 09 Q2 O3 09 (Oa 09 (9 On (R 09 O9
o
*
*
+
4+
5
1
Fig, 5 The 16 most important components
of rocks
: 4
T Tk G Mo
IIT o
Pariodie
Table
Iv
Hank
v
VI
Vil
electronegativity {eV)
13
The total amount of metals produced from the 11 tons of ores
is approx 1078 kg. The mean value of the commercial ores 1s
therefore
1073 kg metal
§iE
10 % by weight
11000 kg ores
The earth’'s crust contains the elements listed 1n table 2
among others. The total amount of metal there is 130 kg in
1000 kg or 13 weight §. Thus the earth's crust taken as a
wheole has the same approximately total content of metals as
a mean mixture of commercial ores, if the ratios of metals
could be changed in an appropriate way.
From fig. 6 it can be seen that the ratio of metal concen-
tration in commercial ores varies from less than 10 (e.g.
Fe, A1) to more than 1000 {Pb, Mo, Ta, Sn, Ag, Au, Hg, Sh)
280
50
T 20 for Uranium + Thorium in the earth's crust.
but only % 5 for Uranium + Thorium in granites and only
280
12
{Note: based on the very low, but still commercial uranium
ores from South Africa).
A rather important conclusion can be drawn from fig., 7. We
have arbitrarily assumed that the most metal ~ iron is
extracted from the earth in a "resonable"” way - that is pro-
protioned to its abundance in the earth crust by assuming
the ratio
annual world production at 1960
for Fe = 1
abundance in the earth's crust
14
Table 2 Contents of some metals in ores and in earth crust
Present in present in earth
commercial commercial crust
ores ores
{weight %)
Fe 20 200 50
Zn i 40 0,07
Cu 0.5 5 0.055
Pb 2 20 0.013
Al 20 300 81
Cr 30 200 0.2
51 0.2 2 0.003
Ni 1 10 0.08
Ay 0.005 0.050 0.000005%
Ag 0.05 0.5 0.00001
Mn 20 200 1
Metals 1077 kg 130 kg
Total
Ores 11 tonne 1 tonne
weignt 1 I tonge T 10* tones * 13
Note: This table does not give a good picture because the
amounts of metal actually used are probably in ancther
ratio to the simplest one used here 1°1.1...
Weight %
Content
1 pqfl 10 PPM lDOlppM
Cr in Olivin
1000 ppM
apuBpUNgE
18NJI0 8,U3.dI8a SNSISA SaJd)
T
9
|
1
| i
10 10
FElements Earth's abundance
2
|
107 104
E per ton of earth's crust
T
Fig. 7 World Production from 'fresh ores'
versus abundance
excess production
factor
0.001 % 0.001 % 0.01 % 0,1 % 1% 10 %
T T y 1 LI T 1 i
=2 -1 2 4 5
10 10 1 10 10 103 10 10
Natural Abundance (earth's crust)
= el
g per Tonne
World production 1960 tons/year
91
17
Then we classify the other metals in the following classes:
- metals being extracted more or much more than the ‘*natural
ratio!' e.g. Pb, Sn, Ag, Au, Cd, Hg, W, Zn
~ metals being eXtracted in the right proportion
Fe (reference) Mn, Cr and U (when taken together with
Thorium)
- metals being extracted at a too low rate
Al (the most important!)
Mg, Ti, Zr, Mg, Co.
From this we might draw the following coneclusion: if we are
to operate a technology of metals use without waste or with
the minimum of waste than the ratio of the extracted metals
should be in accordance with the ratio existing in the earth's
crust. Of course such an alteration in the relative and ab-
solute amounts of extracted metals will have a vital impact
on the technology.
V. Energy Balance for element extraction from the earth's crust
The jump from using the classical ores to the use of the
earth's crust generally as a source of material clearly
means an increase of free energy needed for element (or
compound) extraction.
18
Questions to be answered
- are the potential energy sources large enough to meet
this increased demand?
-~ is the increase in energy consumption a fair price to
pay and a positive solution from the point of view of
environmental policy?
The first of these gquestions is discussed here. The second
ig discussed elsewhere,
As can be seen from table 3, from 1 ton of rock with a
mean elementary abundance for complete extraction and trans-
formation of all components to free elements requires, if a
electrolysis in molten salt media (e.g. chloride) is postu-
lated.
- theoretically (100% efficieney) = 11 Gigajoules (GJ)
)
- practically (20% efficiency) 55 @J
{Remark: part of this energy in form of electrical energy,
and part of heat)
For processing 1 ton of rock per capita per year the free
energy requirement almost equals
55 GJd/year
5'15x10? s/year
= 1700 watts/capita
19
Table 3 Free energy for extraction from 1 tonne of rocks
{simplified earth's crust chemical composition)
Ele~ In 1000 kg of Oxide Mol Free ent- Free ent-
halpy KJ/ halpy for
ment rock Oxygen mol oxide dissociation
kg mol (in 1000 kg (@J) (theo-
rock) retically)
51 277 10,000 Si02 20.000 700 7.0
Al 81.3 3.000 A1205 ,500 670 2.01
Fe 50 9S00 FeOl 5 1.200 200 0.18
Ca 36.3 880 Ca0 880 530 0.47
Na 28.3 1.200 N320 600 280 0.33
K 26.0 680 K20 340 220 0.23
Mg 21,0 860 MgO 860 540 0.46
total
0 Le6 29.000 =-=-- 28.380 3,68
without 3102
10,68
with Si0_
2
20
Considering the contents of 1 ton of earth's crust from the
point of view of the possible free energy carried (see table
1) we get
™ + U ~12 g
{the problem of lithium as a possible source of tritium for
cussed here for the reasons given in chapter 1.)
He) 3T reaction or 'Li (n,nuHe) 3T is not dis-
We assume for the U + Th extraction efficiency a figure of
0.30 (but there no limitation for e.g. a two or three times
higher effieciency) which gives:
(1 ton earth's crust rocks per year and capita)
12 g/ton x 0.30 x 8.6 x 10°° J/g U,Th .
7 10.9 kW/capita
3.15 x 10
s/year
(1 ton granites per year and capita)
1
11
50 g/ton x 0,30 x 8.6 x 10+9 J/g U,Th 41 kW/capita
e
3.15 x 10" s/year
With these assumptions we arrive at the following coneclusions:
Processing of 1 ton per capita/per year of 'earth's crust
rock' regquires 1.7 kW (tot) even with only 30% extraction effi-
ciency of thorium, uranium produces power of 11 ky or 6.5
times more.
21
The zame calculation for granites {1 ton per year per caplital
gives an power of 41 kw per capita which is 24 times mors
than i3 needed for the extraction of the metals, or in other
words about H.1% of the energy avallable i3 used for mineral
extraction. In the URBA at the present time the raw matsrial
praduction requires 5.6% and electreolysis 1.1% making a total
of 6.7% of the total energy consumpbilon.
Table Y The efficiency {n)} of metal extraction and metal
regyeling in terms of energy {in kW-hr/ton metal)
"Fresh? extraction Recyeling
frec fres Recyeling:
Mstal ENePrEyY snergy efficlency Technology efficiency
theovret. pract. n & practimlly %
Mg 1208 91000 1.3 1355 75
Al H&O0 R20G0 9 1300 28
be GH1 4500 24 1240 60
{Fe ores) '
Fe = ~ }
(Ti ores) Gh7 2HO0 45
G oy 13500 2.5 £30~1500 25=-5
Ti 2885 140000 2 33000 28
Fig. 4 gpives the present and possible future Fflows of mabterial
£ the assumptlons made here are correct.
22
Fig. 8 Material Fiows Present
Future
according this
1 tonne/capita paper
Food, plants ///////////
b by /////////////////g ™
Sand, Gravel ", 7
v
Coal Lignite W
Limestone V/// > 5///4/4
Petroleum %
Iron Ore ///
>
Copper ore ,// A
A4
Phosphate 3?’
/]
Salt a ’/
Total | > 4 fonne/capita 1 tonne
23
VI. Size of present and future material flows
One of the future aims of environmental protection among
others will be without doubt the reduction in the amount
of materials extracted from natural deposits per capita.
We include here the waste together with the main products.
The present state of material flows seems to be far from
the optimal (or rather far from a reasonable minimum). The
material flow per capita per year is approx 4 tons without
taking into account the large amounts of spoill {open cast
mining ete.) moved, loss of agricultural land and disposal
off wastes,.
VII. Earth's crust rocks as an energy material source
To some extent the achievement of using rocks as a source of
fissionable nuclides (or fissionable nuclides) depend on the
ability to produce metal and ceramic¢ materials as by-pro-
ducts of the process.
In table 5 is given a very simplified and approximate divi-
sion of the earth's crust material for the preoduction of some
materials.
24
The results seem to indicate (for 1 ton rock/per capita)
Metals total 130 kg/year
Aluminium 70.0 kg
Iron . 45,0
Magnesium 10.0
Titanium h,0
Manganese 0.9
Zirconium 0.15
Vanadium 0.12
Chromium 0.1
Nickel 0.07
Zine 0.06
Copper Q.05
Cement 100 kg/year
Glass 200 kg/year
Quartz 100 kg/year
"Silicon"-plastics 100 kg/year
(C & H from other sources)
Other (fillings) 250 kg
I'ree oxygen 150 kg
Table 5
Earth's crust rocks as potential source of material
Element kg in Pure Cement Glass Quartz "Silicons” Other Non
1 tonne metals (semiorga- material metallice
nic plastics) (nondefi~ elements
ned)
Q 466 70 23 90 50 - 143 150
free
Si 277 - 12 70 50 50 95 -
Al 51 70 3 - - ~ 8 -
Fe 50 45 5 - - - - -
Ca 26 - 30 6 - - - -
Na 28 - - 20 - - 8 -
K 26 - - 10 - - 16 -
Mg 21 10 10 1 ~ - ~ -
Ti 4.4 Y - - - - - -~
H 1.4 - - - - - - -
P 1.1 - ~ - - - d.1 -
Mn 0.9 0.9 - - - - - -
F 0.6 - - - = - 0.6 -
Ba 0.4 - - - - - - -
S 0.25 - - - - =, - 0.25
c 0.20 ~ - - - 30
Total 130 93 197 100 100 274 150
*
From carbonate rocks
62
26
Table 6 Amounts of materials in use per capita
Postulated Reeyeling Time of life Amounts in
Material production (kg/year) by users continuous use
(kg/year) (years) (kg/capita)
| 12 times
Metals 130 1500 25 37,500
2 times
Cemant 100 300 40 12,000
5 times
Glass 200 1000 10 15,000
Quartz 100
5 times
"Silicons" 100 500 5 2,500
plastics
1 time
Other 270 270 100 27,000
VIII TImpact on the philosophy of reactor development
From all these developments we can suggest the following as
that which might result in the development of reactor technology.
- the breeder reactors, both with Unat/Pu-239 and Th/U-233
fuel ecycles could provide a total energy production of
approximately 10,000,000 TW years.
that is a 160 TW civilization (8 Gigapeople with 20 kw/capita)
for about one hundred thousand years even when one ten thoudandth