-
Notifications
You must be signed in to change notification settings - Fork 10
/
EIR-257.txt
2280 lines (1657 loc) · 39.1 KB
/
EIR-257.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
EIR-Bericht Nr. 257
EIR-Bericht Nr.257
Eidg. Institut flr Reaktorforschung Wirenlingen
Schweiz
The possibility of continuous in-core gaseous extraction
of volatile fission products in a molten fuel reactor
M. Taube
=
Wirenlingen, Mai 1974
EIR-Bericht Nr. 257
The possibility of continuous in-core gaseous extraction
of volatile fission products in a molten fuel reactor
M. Taube
May 1974
Abstract
A system of continuous gas purging of a reactor core for
removal of volatile fission products from the molten chloride
fuel is discussed and calculations based on a computer pro-
gramme are shown. The results indicate:
a) the precursors of the delayed neutrons nearly all
remain
b) d1odine-13%1 in the steady-state core is reduced approx
by a flactor 1000
¢) caesium-137 concentraticn in the core decreases
only by a factor 7, but the veolatility is relativ
low due to chloride
d) caesium isoftopes 135 and 133 can be separated from
Cs-137 by a factor of which make casier the Cs-137
management
e) xenon isotopes are extensively extracted
All this results in a significant improvement in the safety
of this reactor type in the case of a core accident.
1. General Remarks
"The aim of this paper is to discuss the possibility of de-
creasing the concentration of volatile fission products in
the steady state core as a counter measure in the event of
a core accident.
The design philosophy of a safe reactor is guided by the
statements of the following type: (WASH 1250, 1973)
"The measures agalinst the escape of radiocactivity from nuclear
facilities (nuclear power plants, fuel reprocessing waste
disposal facilities, shipping, storage etc.) should use design
features inherently favourable to safe operation e.g. by se-
lection of fuel, coolant and core structural materials which
will have inherent stability and safe characteristics.™
In this paper a molten fuel fast breeder is discussed which
could realise both these requirements through: - minimising
the hazard of the escape of radioactive by substances by
continuous extraction of the most volatile fission products
from the molten fuel so that the steady state amounts of these
are reduced by one or more orders of magnitude compared to
the classical case of solid fuel periodically discharged and
reprocessed.
It is well known that in the case of a reactor accident the
hazards are centered around the volatile fission products
(F.P.). For example according to Farmer (1973) a 1500 MW(th)
9
reactor contains 4 x 10” curies of volatile and gaseous
fission products of which I-131 equals 50 Megacuries. The
hypothetical release having a very low probability of causing
harm to the general public (unlikely to cause one case of
fatal illness within the ensuing ten or more years) is of the
order of 5 kilocuries of I-131. In a hypothetical low pro-
bablility accident they discussed a release of 5 Megacuries
of I-131 and 0.5 Megacuries of Cs-137.
2. Continuous gas extraction
The continuous in core gas extraction of volatile fission
products from the liquid fuel is based on the following
data and/or roughly estimated calculations (using the appro-
priate "GASEX" programme)
a) the reactor is fuelled with molten salt fuel - in this
case molten chlorides PuCl3 - UC1l, - NaCl etc. (fig. 1)
b) the chemical properties of the fission products in
this molten media are characterised by the scheme
shown in (fig. 2)
¢) the balance of the fission products - especially for
chlorine is given in (fig. 3)
d) the thermodynamic stability of all the important
irradiated fuel components are given in fig. 3
e) the volatility (partial pressure) of some selected cru-
cial fission products: e.g. caesium in the form of ele-
ment, oxide and chloride is given in fig. 4
t breeder
o
wd
fa
1
Fig.
g
=l
N
B N R TR T
_ vn%ooufl SRR, oooooouoofooofioo«ononouomn"ouoonnunnofoi,_ J
Wo | ONoo.‘”
R 4 S
S &
5 5
K< %
o
(X 5
&
5 X
b / W\ o
— _ £ o
- T \A\wfl
W) b o
- r B 7% 2 200 P : A
| ot B S0 [ T ST (
fl _ % { ! > D 2 . N N
1 —— RS 7 X
< //mf/ /Aw
N 7 €
N N\
R TR,
R R o
< N
;.;_1;Maw//
v
N
N
w ,
NSO
AN
AN
ANSANNE AN
AN
Fig., 2
'ission Products in Molten Chlorides Media
36 Kr 54 Xe
35 Br >3 1
34 Se 5 Te
435 As 51 Sb
32 Ge 50 &n
31 Ga hg In
50 Zn hg cda
L7 Ag
he Pg
45 Rh
L Ru
bz Te
bz Mo
41 Nb
4o Zr
64 Gd
63 Eu
62 Sm
6l Pm
60 Nd
b9 Pr
58 Ce
39 Y 57 La
38 Sr {50 Ba
57 Rb |55 Cs
fast
Gas 1
Extraction slow
very slow
<:§%latile chlorides
Low volatile
chlorides
Non
volatile
metals
Low
volatile
chlorides
Non
volatile
chlorides
Low volatile chlorides
/\
Fig. 3 Free Energy of Formation
=
n g
© 0
0 T g°fl"Noble metals
B »| Noble gases
0 &
o o
Q, o
o
oo
o g
H oo
n
a° MoCl
g © X
-
- NbC1l
5
-100 T — AgCl
— SbCl
3
CdCl2
AG = SnCl
-1
(KJ mol = InCl
- UCl4
-200 =
- - 7ZrCl
UCl3 3
P 5
E - NdCl3
« -
o < PrCl3
e — CeCl,
o
HoL - LaCl3
—BOO T - NaCl = RbCl
= CsC1
- SmCl2
- Sr'Cl2
= BaCl
Fission products in form of chloride
Fig, & Volatility Pressure of Caesiumemetall (Caesium Oxide)
and Caesium Chlorides
1000 =
100 -
bar Cs-met __ —
—
1 - ‘o .
boeiling point 500 ¢
CsCL
! ! I | I |
900 1000 1200 1400
Fig. 5 Scheme of the independent Yield Calculation
A = 137 §
Extraction rate
Sb Te 1 Xe Cs Ba
B A
. . /’\t B—‘ A
Filssioned
plutonium o 7
——t -
avom Q“—\‘Q\\> B
100 =
51.77 %
50
20
10
yield
%
accordingl
(Crouch,
1969)
0,1
107
106
time
seconds
lOLl
10°
102
10
1
Fig. 6 Scheme of Gas-Extraction
Liquidjdrop H,O HBO
* Separalor \eparatibn
? e,Te
Aepaatio
o o =
o o o ‘
Br,T
jeparatign T
[ Kr ,Xe
deparatipn
!
| e— |
Cq R
10
f) +the history of each individual fission product is
calculated on the basis of the independant yields:
see fig. 5 (according to Crouch 1973)
g) the in-core molten salt medium is purged by means of
heliumhydrogen gas bubbles which greatly influence the
chemical behaviour of some fission products (parti-
cularly iodine). The assumptions concerning the size
of this stream is given in Appendix 1
5., Scheme of gas extraction and possible technology of
gas separation
In order to give a basis for discussion on the gas extraction
systems fig. 6 gives a simplified schematic. It must be
stressed that this is a preliminary suggestion only without
any basic studies.
4., Scheme of calculation
For calculation of the gas extraction system refered to here
a computer programme "GASEX" has been prepared (using Fortran
IV for the CDC 6500/6700). The principal layout on which the
calculation is based is given in fig. 7.
11
Fig. 7 The Scheme of Calculation
Independent yield: n
A(z—l)
Iradiation Irradiation
(Al)z
(A+1)
f
(HJ ’Y)
Neutron
irradiation
A A
(NA1)
(n,y)
Neutron
irradiation
f_l
Z
(Z-1) (Z) (Z+1)
12
The only assumption arbitrarily made was the gas extraction
rate of the volatile fission products.
The calculation was made for the follocwing four assumptions,
given in table 1.
Table 1 Core dwell time - (seconds)
Variant
1 2 ) Y
Se and Te 10° 10° 10" 10°
Br and 1 106 lOLL lO3 102
Kr and Xe 106 10° 10° 10t
A1l other elements *) 106 106 106 106
* ) 106 seconds equals 11.57 days which 1s postulated as the
reprocessing period of the total liquid fuel
5. Results of the calculations
The most important results are:
1. Stable bromine isotopes A-79 and A-87 (fig. 8) are extrac-
ted with high efficiency.
The short lived isotopes (t 1/2 ~ hours or minutes) (fig. 8)
are extracted in rather small quantities (logarithmic ver-
tical scale).
5
13
Short lived bromine isotopes A = 88, 89, 90, being also
the probable precursors of delayed neutrons are in
practice not extractable (no loss of delayed neutrons)
(fig. 9 =~ 1linear vertical scale)
The very high retention of the heavy bromine isotopes
in the molten fuel is almost independant of the rate of
gas extraction. For the highest gas 'extraction' only
a small extraction of bromine occurs (fig. 9).
The main problem for krypton isotopes is the Kr-85
(fig. 10). The gas extraction is successful for the
lowest case (2) and results in a reduction of the amount
of Xr-85 by approx 1000 times.
By increasing the gas extraction rate the amounts of this
isotopes decreases by a factor 10
5. The short lived krypton
isotopes are very efficiently extracted (fig. 11).:
5.
The gas extraction has only a small effect on the two
radioactive strontium isotopes (fig. 12). They are de-
creased only by a factor of 7.
The case of the iodine isotopes (fig. 1% and 14) is cri-
tical for two reasons
I) the iodine-131 is an important factor in the core acci-
dent hazard.
14
The ligures 8-17 are made directly by the CDC 6500/6700 prin-
If * appears then at least two
ter as output from GASEX;
d.
-
curves are superimpose
e D T T B e ) S Bt e atatealed Sl
*..*'Oll.'...l'll.!!l.l*»@ll'm'l"'.:ll..r.+.!'t!l..liN.lo.ll!l.’.Ml.';ll'.dllIll‘l!+!l.l.l.'l.lte'.l|l|+.l¢ l:
..*l...'...ll’.'.l"'.;—-
s 4 " . 2 i
"x 5 4 . e ‘e
x4 4 . 2 3 1
s 6 5 . 2 £ !
IR Y . e £ T
. S 4 . Z ¢ - T
s & n . z . T
PR N e 1
*+ 5 v K € <7
'.*'......l.l.l...'.I'+»D..::.l."l.‘l....+NN'.I-'fl.il.mw....-.—v.fifi.'I'.'I.......‘|.+
P "2 £ 1
x4 z ¢ 1
PR e £ Tt
s z " ; To-
PR z £ .
s om z £ T
PR 2 . § 1 .
a0y z . 3 1 .
"ah 2 . ¢ 1 .
”:'l.....'NN.'...l.-'.'.M;M.I.'.HH'.'....*
"a 2 N 111 .
s 2 £RC 117 .
" ze see T1T .
" 2z £ 131 .
‘s 22 £ee TTT" .
.22 £eoTTIT 0t .
s F2 £FEITT . .
bt bd bl el el e e bt e e et bl el e b et bl bl bed e bl b b bt b bt ek e
]
*.'+.|I...'.I..l..I..'.ufk-lf.}fl."'....'....I'+.'I"'.....II.'.....‘.
e S et B B e Tl ¢
204300 °1
26+300*1
20+300°7
20+300°7
20+300°7
<0+300°1
c0+300°1
2343007
“a 2 EFaAlT
*xd28x17
po+3ArG et
cg+300°T
nn+3go*y
0a+300°73
ap+30C°7
gg+300°7
po+300°T
no+300*1
cu=-300°7
T0+300G6°G S31T-47TVH
Ju=30C*T
TC+I0CH*G 241T7~4TVH
Zn-300°1
ro+3000°¢ A4I-STYH
c0~-300°*7
TR+5002°¢ A410-47TUH
2n-3aa*71
nn+30c%*2 A4I3-471YH
20=-300°%7%
IC+5086%C 3311-41YH
ct=300°7
370yes
20=-370°7%
ER RS R
[y
he-300°7%
29 3431051
Hhe=300°7
98 3d40I6ST
H0-306G°T
g 34010SI
o -300*3
g 3401051
£ 3401081
wo-Jop*t
76 34C1081
hE-300*7
T6 3d010ST
ho-=-300°T
£/ 3431081
5S¢
T
sSss s aNeeT RSO na,
.fi -
-
.
-
-
.
-
-
.
-
gg-300°7
6% *ON*LV a3 LtHiW3ITI -
GL-3006°7
6f TON®*1V 49 ANFWITI3 -
IG-300°*1
Gf *CN*Lv o9 INAWITE -
Gg-308°7
aY *GHNTLlY 4R INIWITIT -
Gu-Jop-t
G CON® LY dfi INIWITT -
90=-400°*1
G *ON*LY o INIWAI -
G0-3L0°T
G¢ *ON*}V 48 LN3IW3ITI -
96-100°T
S *ON*LY d8 INIWHITI -
HIAWANIIWOLIY 30 S3d010SI
.l.‘.'...‘.........AT.
l'.'l..l....l......+
[F41
1y
*
[
L]
e L I e B B B e B B e I e B B B I I T I e N e N R ]
L
o
-
Pl..lt.!.!..l.ll.!I#'llIIQIQI.II'II"I.*!!&. '.fl
e e d e e et | - o |
f0-300°1
Hdvy9
g-3006°7%
Hdvao
80-300"%
Hd¥Ad9
#0-380°1
HdTd9
f0=-3G0°Y
Hd¥9
gu-300°1
Hd V9
g0-A00°*"%
Ha Va9
g0-200°1
Fdvado
GRAPH
GRAFH
GRAPH
*..+'.‘-I-I.‘.I.Q‘l...I.".I--l.‘......t..".".-.......Q'C.‘I...‘+.II...I‘l..‘.‘......"....l.....‘.....'..
ALL ISOTOPES OF ATOMICNUMHEER 39
1 - CLEMENT 8% AT.NO. 35 ISOTIOPE 88 HALF-LIFE 1.6040
2.00&-01 Ga00E-01 b.U0E-31
E+01 ScC
2 - FLEHAENT BRP AT ,.NO., 35 ISaQT2PE 83 HALF-LIFC 4.500&£+00 SEC
Za00E~01 4.00E-G1 beUOE-
3 - ELEMENT RR AT.NO. 35 TIS07TOPE 90 HALF-LIFE 1.600E+00 SEC
2.00E-01 4e0bE-01 b. 00E-
I - » -
I - - L]
I . - .
I - - »
I L ] L] -
I - - -
I - - L]
I - L] -
I - - -
+‘.+...‘.....l..‘.ll'.l".......II‘I..-'.....‘-......".I-....'...
I - - ®
I - - .
I - - »
I - [ ] -
I - - -
I . - .
I - - -
I . - .
I - - -
+.'+....I..I.I'...l‘l--'.+..Q...‘.....I...-I‘*l'.l.'...'.....!...
I - - -
I - - L]
I - - -
I L » -
I - - -
I - - -
I - - -
I - - -
I - L ] -
a1 8.00E-01
8.00t-01
- -
- -
» -
- -
[ ] -
- -
- -
[ ] »
- -
".......‘.I.-‘..t.--
-
»
-
-
1. 00t+00
1« 00E+DQ
1.00E+043
LK I B IR R A
®
+.--.l'.'....l...l.‘3..
+-..I-.I.I....I....
¥4
&
(8}
=t =t g b et gt el e e e ped Bt b Bt P P ] et b b e P pag ey e e | e punt o
i *.
GT
ALL
ISOTOPES OF ATOMIGNUMBEK J5
GRAFPH i - ELLMENT KP AT . NO. 5B I50TCPE 4z STA5LE
1. 30E-01% L. CG0F-06 1.0UE-04 1.40F=-02 1.00E+06G 1. UDE+DZ
GRAPH 2 = ELEMENT Ki# AT NUO. 36 ISOTDFEE 53 S5TAuLE
1. 00E-048 1.03F~06 1,30E-04 1.00-12 l.3uc+00 1. 00c+U2
GrRAPH J - ELEMENT K7 ATaNO. 30 ISOTGRE 84 STAasLe
1.0C0E-08 1. 000=-06 1.00e-04 1.80e8-02 1.906+40 i.00E+02
GRAFH &4 - ELEMINT KPP AT.NO. 36 ISOTOPE 85 HALF=LIFE 1.076E+0] YRS
1.03E-0C8 1.338~-16 lad0E~04 1.00t-02 1.00+00 1. 0ut+be
GRAPH 5 - ELEMENT KR AT.NO. 36 ISOTCPE 56 STasdLte
1.00E-08 1. 04F-06 1.008-04 led =02 1.J38+0C0 i.00E+02
GRAPH & - ELEMENT K& AT .NO. 36 I50TCPE 87 HALF-LIFZ 7.000%+31 Min
1.00FE-08 1.00F-36 1.20E-04 LedOE-12 i« 00 +0C 1.u0dE+0¢
GRAPH 7 - ELEMENT KF AT4NO. 36 ISOTGPE 88 HALF-LIFE Z2.800E+0U0 HK>
1. 003E~108 1.006-06 lHGE-04 led0E~N2 1.006#00 i.00E+02
GRAPH 8 = ELEMENT ¥FP AT.NO. $b ISOTOPE 83 HALF-LIFE 3.1008+00 Min
1. 008038 1. J0F-06 1.400E-04 i100£-0G2 100 +00 1. 00E¢Q2
-l ——————— e it ~I---————— tomm e -~ fomm - e tommm v L i ey ==
1. *..+-..-"O...-...'..‘.+..'....".-'."....+-'-'......'..'.....+,‘."...'.'.-11—.:.:;¥¥+-'.-‘.‘.......-..-.*.-+
I - . . N 111%%%%4 *8, - I
I - . - 111111%%%%4 * 8. - 1
I . . . 11111 o ¥#¥¥4 ¥ 8. « 1
1 - . - 11111 . S9FFETLY 75 8. - I
1 » . - 114111 SEIRILY 7o 8 - I
I - - » 11111 SERIIL4L4 76 8. . 1
1 . - 111111 SH¥YF Likh. 76 Ba - I
I . . 111111 . HEeERE L4 - 7 @ 8. . I
I - - 11111 » LL##3¥ Ly . 7 6 8e . I
2% teetaenanrcsnsesssnssvonatenssllcesncssanccanseteaalt ¥ euvliioanoscensatecssacanel/ /bbansnssBotecansescsssnsnsnnrsscntaant
I . - 1 « Y F 4 - f b 8 - 1
I . - 1 9 ¥ i . 7 b 8 . . I
I - -« 1 5 ¥ & - 7 6 3 - - I
1 . «1 5.7 &4 . /7 b 3 . - I
I . 1 5 ¥ 4 . / b 8 . - 1
i1 . la 5 *. 4 « T D 8 . « I
I - 1 . S5 F . 4 « 7 b 8 - . 1
T . 1 . 5 ¥ o G of 6 8 . . I
I - 1 - 5 % ol 7 6 8 - . I
3e *.-fn-s--n-lctlonallu..*lo!..u.--..-55‘*0.-4“.1--n---0.-------7?66-.-----a-afjs-.---’}.c-...-....-..'..‘.+..+
I 1 - 5 ¥ L o 7 6 8 . . I
I - 1 - 5 ¥ L . 7 ba ] - - I
I . 1 - 5 ¥ b . 7 6 8 . . I
I . 1 - 5 ¥ 4 » 7 b N 3 . . 1
T 1 - LoF 4 - 7 6 ® 8 . » I
I . 1 » 5 ¥ 4 - 7 B . 8 . « 1
I . 1 - 5 ® L . 7 b . s} . - 1
1 . i . 5 # 4 . 7 6 . 8 - - I
1 . 1 . 5 =% L . 7 6 - 8 - « I
(l. +.I+--l.-1...n-n’-.-I-I+.Ol5.#.'..h!..‘....*I.I-.....?.600l.l.fi+.l..8....-tl...t'.t*.-O.Il-n‘.l.I.I--.-*-.*
9T
AlLL ISCYOPEL
GRAPH 1 - ELEHMENT KR AY.NO.
ZBUGFA"Dl
GRAPH 2 = ELEMENT K2 AT.ND.
2. 00r=-01
GRAPH 3 - ELEMENT KR ATaNO.
E-Ufif-fil
GRAPH 4 - ELEMENT KE AT .NO
2. H0E-01
GRAPH 5 - ELEMENT KR AT.NO.
2.00E-01
GRAPH 6 = ELEMENT KR AT.NO.
2. 00E-01
+
4+ % s & 5 8 ¢ & & &
HP*F4HO*P{HP%P4* Poi b et b e e ped bl ] e e et Maf ped e R b b e e
-
L]
-»
-
L J
-
-
-
-
+
4% 2 9 9% 0% 892U TES RS IS
4+ 8 8 8 4 8 4 v o2 @
4 9 % 9S00SS0 S0 "n s
111111
111111
OF AYTOMICHUMDER
"o e 0 sasthdadeesIes
111111
o
3y
22222 .
2222 -
s e T et CEEE L L ey I
33
33.
33
445506
44556
4 5 b
+‘.+........I-I.....1'.*....'....‘.'.......+.I-I2.-I.I.I-......+.......'.I.'...‘.‘3-f....h.s.&..-...‘...*..
I
IS0Y0PE G0 HALF-LIFL 2.200B+01 SEC
4o BHE~GY BeJ0E~G1 8.00£~-01 1.00E+00D
ISOTOPE 91 HALF-LIFE 8.400E+00 S5tC
4. Q0E-01 5.508-01 8,00E-01 1. 00E+0Y
ISOUTOPE 92 HALF-LIFE 1.900E+00 SEC
4.0JE-G1 G J0E~-01 8.00E-01 1. 00E+0D
ISOTGPE 93 HALF~-LIFE 1.200E+400 SEC
L.30E-DtL 6«00E~-01 8.00E~-01 1. 00E+0GE
ISOTOPE 94 HALF-LIFE 1.000E+400 SEC
L.00E&~01 B.d0E~-01 8.00E~-01 1. 00kE+00
ISOTCPE 9% HALF-LIFE B.080E-01 SEC
4.D0E-D1 6.00E-01 8.00E~01 1. 00E+0D
e P m e —— [-emem o — [romm————— tomm [-=~
I.‘O‘.-.l’.t-‘t..ll’..*i.l.l..l..l'.'.I..I+.l.‘.fll'l..‘..'l'..+‘.‘I...Cflfloflu.ictti*.l.-....l.III.Itflil;fl.*
L - - 1‘ I
- - - 1 = I
- - 1 * I
- - - 1 = I
- - » 1 & I
. . . 1 A §
- - - 1 * I
. - . i =1
. - . 1 R |
+.-...--..----.-a...+...........-....---+-..--.-o---1111.22“*..*
. - 11 2 F. 1
- - 111 2 ;- i
. - . 111 2 3*. I
- . » 11 2 3%. 1
. . 111 2 Fre 1