-
Notifications
You must be signed in to change notification settings - Fork 10
/
EIR-276.txt
2442 lines (1710 loc) · 41.1 KB
/
EIR-276.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
EIR-Bericht Nr. 276
EIR-Bericht Nr. 276
Eidg. Institut fur Reaktorforschung Wiirenlingen
Schweiz
Breeding in Molten Salt Reactors
Lectures at the University of Liege/Belgium
15th May, 1975
M. Taube
| I
,_l
Wirenlingen, April 1975
EIR-Bericht Nr., 276
BREEDING IN MOLTEN SALT REACTORS
Lectures at the University of Liége / Belgium
15th May, 1975
M. Taube
April 1975
Remerciements
Je remercie M., le Prof., G. DUYCKAERTS de 1l'Université de
Liége, de m'avoir permis de faire cette conférence dans
le cadre de la licence speciale en Science Nucléaire.
M. Taube
WHAT IS BREEDING?
WHY IS BREEDING POSSIBLE?
WHAT IS BREEDING GOOD FOR?
Breeding is a process in which two mechanisms are occurring simultane-
ously. 1) Fissile nuclides are 'burning' and producing energy and
neutrons. 2) Some of the neutrons are transforming the so called
fertile nuclides into fissile nuclides at a rate greater than the
rate at which the fissile nuclides are being consumed.
Breeding is possible because of three factors: 1. Some fissile nuc-
lides have a rather large nett production of neutrons so that more
than half of them can be used for breeding. 2. The fertile
nuclides are converted to fissile nuclides only by the simple, and
energetically not expensive act of neutron capture followed by two
spontaneous processes which occur at a much faster rate than the rate
of neutron capture. 3. Fertile materials are present in the earths
crust at relatively high concentrations. (This also means that these
fertile nuclides must be rather stable, beta stable of course, like
all heavy nuclides they are alpha unstable. The a-decay rate must be
matched to the age of the solar system).
Breeding makes it possible to use not only the uranium-235 (the only
‘naturally occurring fissile nuclide) but also the uranium-238 which
occurs in amounts 140 times greater than U-235. These factors permit
the use of ores with low uranium and thorium concentrations even
down to granites (>50 ppM U+Th).
Practically only some reactor types are suitable for effective bree-
ding:
- all reactors with a fast neutron spectrum (e.g. sodium cooled fast
reactor, gas cooled fast reactor, molten salt fast reactor)
- one reactor type with a thermal flux spectrum (molten fluoride
thermal reactor).
FISSILE AND FERTILE NUCLIDES
Definitions
Fissionable Nuclides
Fissile nuclides
Fertile nuclides
Characteristics Neutrons of any energy Only neutrons of high energy
can produce fission (>1 MeV) can induce fission;
Neutrons with lower energy
are captured and after gamma
emission (and in some cases
then by beta-decay) a trans-
formation into a fissile
nuclide occurs.
Examples U-233% U-235 Th-23%2 U-238
Pu-239 Pu-201 U-2310 Pu-240
Binding eénergy of
neutrons and
barrier to fis-
Binding energy of the
captured neutron is
greater than the fis-
Binding energy of the cap-
tured neutron is lower than
the fission barrier
sion sion barrier (more %@ < Q
exactly: fission n a
activation energy Qg) only fast neutrons with
kinetic energy E, can cause
Qn > Qg the fission
Qn + Ec > Qa
Fertile Nuclide [Fissile Nuclide
°q re s ) TP §
\/ t 0.8 MeV MeV
k 74
29 ‘ bar =4 Upatilug Transformation
\ after neutron
capture
U-236
N
Qn = Neutron Binding Energy
> Qac
Qbar
Fission Energy Release
Activation Energy for
Fission
= Energy barrier
198 o
and Fission activation energy Q
n
-
—
Neutron binding energy Q
54
200 N/\r*
Deformation
233 234 235 236 237 238 239 240 241 242
atomic mass, A
THERE IS ONLY ONE FISSILE NUCLIDE
EXISTING IN THE EARTH'S CRUST
Atomic
Mass, A 5
Fissionability Parameter % = 36
2704
@
2604 Fm@
©
Es
non-fissionable c (] o
[
250 _ o ®
qg Bk
@
A -
Aing o
@ Pu-241
240 @FPu-239
230 -
:
Rn fissionable
220
At
104 51—209%’
le-208 0=-209
200
v T 4 T T T T T T | - | VLT v T v 1
g2 84 86 88 90 92 24 96 98 100
Atomic number, Z
Half-1life
years
Es
Md
T R N Feo B M e (RN P S S WA S SRR RS (LS
82 34 86 88 90 92 94 96 98 100
Atomic number, Z
for the following reasons
1. The fissile nuclides must have
2 2
%
Z
I >%6 (=
I fissionability para-
meter)
2. The fissile nuclides must be beta
stable, because the half 1life of
beta-decay in this region of A
1s smaller th%n 10 years.
3. Because for Z >36 gives in the
realistic case Zz 92; all
fissile nuclides are alpha un-
stable.
i, To exist in the earth's crust the
half 1life of alpha decay of the
nuclide must be of the same
order of magnitude as the age
of the solar system 2109 years.
5. Only one nuclide fulfills all
these criteria: - U=-235
Relative 10
abundance t 1/2 = 10x10" "y: Th-232
1 S
A
t 1/2 = 0.7x109y: U-235
Supernova
t 1/2 = 8.3x107y
Pu-244
10
-2k
|
4 3 2 1 Present
time, Giga years
J
=
1
l
ONLY TWO NUCLIDES EXISTING IN THE EARTH'S CRUST CAN PLAY THE ROLE OF
FERTILE NUCLIDES
The fertile nuclides must fulfill the following obvious criteria
1. They must be abundant on the earth. At least a mean value equi-
valent to 1 ppM throughout the earth's crust (or more exactly in
the outer layer of the earth's crust.
2. Thus they must be beta-stable
3, Thus the Z value must lie between 90 and 94 and be even
4, These are the isotopes of thorium and uranium with t 1/2 >lO9 years
The only two 'natural' isotopes are
Th-232 and U-238
These nuclides can be transformed into fissile nuclides by simple
neutron capture and spontaneous beta-decay.
Thorium Uranium Cycle
/\ Stable in Nature
(D veta stable
(Q bpeta unstable
—» beta decay
’f fission
*neutron capture
e X
od = 2xi;;jL/
o = 10710
e ?
thermal . .
g is relativ big _
(n,y) o0 = l1o 10
Ox =5x10" %5~ Oz .9x107 7571 ®
2334
22 min 2.7 days
‘ i o = 2x107°
232 ] A
Th Pa U
1 1 )
90 91 92
A
2‘%1T
240 -
239 7
238 7
Uranium-Plutonium Cycle
o = cross section for neutron reaction (cm2)
@ = neutron flux (neutron cm—2s_1)
A = decay constant (s-l)
all data for ¢ E 1015n cm-zs_l L 7x10
fast O
/c:m: 10710
e {
ofast fls small o =410
TO PERMIT BREEDING THE NUMBER OF NEUTRONS EMITTED PER FISSION
SHOULD BE LARGE
The scheme of neutron induced fission of Pu-239
240 fi i 1 1
giPu+n > 9uPu 1581ons}22184 + 2?Nb59 t v ong (prompt neutron)
delayed ’/// - V8~ (beta-minus decay)
neutron lOOM
emission 42 O58
Y stable
136I
53783
lB%XB- (beta-minus decay)
54482
stable
The value of prompt neutrons fission = v
. The value of v for uranium isotopes 2.5
The value of v for plutonium isotopes 2.9
. The value of v increases when the energy of the captured neutron
is ~1 MeV
W
Table All data approcimate
v Value of Neutrons per Fissioned Nucleus: v
Nuclide | Thermal o .o .oactor
reactor
Y n n
U-235 2.431 2,09 2.57 2.50
U-233% 2.48| 2.25| 2.51 2.51
Pu-239 2.87| 2.08| 2.88 2.40
U-238 - - 2.66 very
small
Th=23%2 - - 2.36 very
small
Pu-240 2.87
Pu-241 2.97
Pu-242 2.18
3.00 8
L1801 3.1 2.06
Y 1.26 habig
oo
Pu-240 [lu~238
T L] 2 L 1
10 1 10 10 10 10
Neutron Energy, eV
ONLY SOME OF THE CAPTURED NEUTRONS CAUSE FISSION THE OTHERS BRING
ABOUT A GAMMA EMISSION. THIS REDUCES THE BREEDING POTENTIAL
fission fragment
83 fissions—=fission fragment
~\\*239 neutrons (83%x2.88=239)
100 8% atoms
100 atoms prompt neutrons (from
neutrons —= of 17 atoms Pu-239=2,88 per fissioned
fast Pu-239 of Pu-240 atom)
gamma
The ratio of non-fissioned atoms to fissioned atoms 1s called «o
a = %%%f%% (in this example o = %% = 0.,20)
We define: OYabsorption = o(n, ) + o(n,f)
The real number of emitted neutrons per neutron absorbed equals:
in this example -
n = 2.88 ('§217) - 2.40
. om,f) .. L
B O(H:f) + O(H,Y) l+a - 1 -
L? = 2.88 T3 0.2 ° 2.u?d
The value of n is strongly energy dependent
The value of n differs for different fissile nuclides
Value of n for fissile nuclides
: y (simplified)
Cross section Cross Section of Pu-239
BADHE (10—24cm2 (simplified) n
1000 1
~
100 o
e ___.___..__-———-_,/—' ——/——n minimum
o~ '-__________,—’
10
ocapture‘\
o(n,y)
Thermal Fast
Reactors Reactors
T T ] 1
0.01 T T T T ! 2 2 4 6 8
1072 1 102 10" 108 108 10 1 10 10 10 10
Neutron energy, eV
Neutron energy, eV
THE NEUTRON BALANCE FOR FISSION AND BREEDING IS AS FOLLOWS:
Molten Salt (thermal) fluoride
breeder for
~100 neutrons
Molten salt (fast) chloride
breeder for ~100 neutrons
Nuclide Absorption Fission
232y, by, 7 0.03
233p, 0.02
233y 41,4 92.3
23L‘U Y 0,01
235y 3.4 6.8
236y 0.3
237Np 0.3
6L1 0.1
14 0.7
IBe 0.3 0.9
g 0.8
Graphite 2.3
Fission 0.7
products :
Leakage 1.0
(nE 2.2317)
Breeding ratio (total) 1.0708
Nuclide Absorption Fission
2350 (n,v) 22.51
(n,f) 2.99 8:.2%
239py (n,y) 5.58
(n,f) 28.98 85.55
2LmPu (n,vy) 2.214 v
(n,f) 1.54 4.72 | §
Na 0.26 @
Cl nat 3,16
Fe 1.3%0
Mo 2.04
Fission
products A
23%(n,y) 23.15 N
(n,f) UeB5 1.50 O
Na 0.08 =
Cl nat 2.22 3
Leakage 2.90 £
Breeding ratio core 0.716
blanket 0.670
total 1.386
Balance for Thermal Fission U-233
100
neutrons for
fission
100
neutrons
for fission
Fission of 91
atoms of U-233
225 neutrons
6 atoms of U=~233
breeding gain
Y £
Balance for Fast Fission of Pu-239
(Fission Products not shown)
100 neutrons
u
O
Fission of 83
atoms
v = 2,98
239 neutrons
100
neutrons
for fission
Pu-240
7 atoms
DEFINITION OF BREEDING RATIO AND BREEDING GAIN
BR = average rate of production of fissile nuclides
average rate of loss of fissile nuclides
Rmaximum = Breeding potential = n-1
G = Breeding gain = BR-1 = n-2; for breeder G>O
1) for typical fast reactors; value of breeding gain, G
oxide fuel 0.25 (at present for 300 MWe LMFBR;
G = 0,12 £ 0.03)
nitride fuel 0.3%0
carbide fuel 0.4 + 0.47 (gas cooled FBR)
molten chloride U955
2) for thermal breeder
molten fluoride 0.06
all other fuels
solid and ligquid <0.00
Typical value
BR = [Mechanism for Pu fuelled
fast reactor
(+v |No. of neu-
trons per (+2.96
fission
-1 one neutron
for fission -1
claim £
-0 loss due to .
absorbtion 104
in Pu-239 0.24 Metallic fuel
-A |losses in 131 Rt
Structural - Molten chlorid
material, etc. (0.1:0.25) e
-L |leakage of 13] Fruoe
neutrons -(0.04+0.06) ride
-T losses due to
absorbtion in |-(0.01+0.015)
P
+F ., |rate of fission
of U-238 +(0.19+0.22).
.(v=1)neutrons from
U-238 fission |.(2.70-1))
( 1 rate of ab- ( 1 ) 0.8
l+a/ |sorbtion in Pu-239 U-233 U-235
Pu-239 in (1 + 0.24)
(n,y) reaction
BRfast= 1.25 + 1.40
10
FOR THE CHEMIST, THE POSSIBILITY OF INTERNAL OR EXTERNAL
BREEDING IS OF IMPORTANCE
Primary Step .. Secondary Step
Cycle Fertile Intermediate | Fissile Intermediate Fissile
Thorium Th~232 Pa-23%3% U=-233 U=-234 U=-235
90 91 92 92 92
Uranium U-238 "Np=-238 Pu-239 Pu-240 Pu-241
g2 93 94 QY olu
Fissile and Fertile Materials
‘Micro-mixing (U,Pu)O2
Macro-mixing UO2 particles + PuO2 particles
In fused salt: PuCl3 in fuel, UCl3 in coolant/fertile material
External
Small critical mass, Using the fertile medium
spectrum hard, breeding as coolant in a 'Chlorophil'
ratio high cooling prob- type of reactor.
Fissile TFertile lems, low Doppler effect,
loss of reactivity due
to burn-up
<100 MWD/kg possible
higher enrichment
Internal
No blanket
spectrum softer, 1
BR, high cross se
299,99,
tion of structural
materials, good \’”"”
Doppler effect, \\’”
longer burn-up to \.A’,‘
100 MWD/kg lower
enrichment
Note: for ~3000 MW(th) radius of core is ~100 cm
thickness of blanket is ~100 cm
Liquid fertile
material as
coolant
11
DEFINITION OF DOUBLING TIME
Doubling time To is the period of time (years) in which a breeder
produces enough fresh fissile material to fuel a new breeder react
with the same power level (Teff includes the inventory of fissile
materials out of core e.g. cooling, being transported and reprocessed).
The compound doubling time Tigip'takes into account that in a breeder
system, the new breeder can be fuelled with fissile material coming
from the total system and not only from one reactor.
_ Specific inventory (gram fissile/MWth)
To - (L + o) *° G (days)
G = BR—l; breeding gain
r = fuel inventory out of core
L = load factor (hours per 8760 hours in year)
I
= fraction of fission in fertile nuclide
Teff - To (1+F)
comp L(l-r)
1n?
Doubling
Time T
(years)
- 12
Doubling-Time and T 40w
Breeding Ratio 30
Sodium cooled, burnup 10 MWD/kg fuel
1 worid Energy Production
Oxide fuel, specific power
0.7 MW(th)/kg
20
/ Nuclear Pdwer
15 = L
10
G e ] s e e e ] e
|
I
I
I
) I
’2 years _J
|
J
1 20 yea \\\:::;:
; 8 ‘yea 4
BR
0 T i il 7 \ T
i 1 1 1 L] 1 Ll
1 1.1 1.2 1.3 1.4 1.5 1970 1980 1990 2000 2010 2020 2030
12
DOUBLING TIME IS COUPLED WITH FUTURE ENERGY DEVELOPMENT
The rate of doubling (doubling time) of the total energy consump-
tion is ~18 years and may increase in the future,
Doubling time of electrical energy consumption is ~9 years.
Doubling time of nuclear power capacity is less than 9 years.
Doubling time of breeders should be of the same magnitude.
In the future, civilization should reach a steady state when the
doubling time for the breeder will satisfy the demand with
Ts> ~30 years.
Combined Breeder/Reprocessing Plant
Uranium+Plutonium
Uranium=-238 Fuel
.3 kg/da Preparation
? e Y 1 kg/day
Fresh Fuel
2.3 kg/day
(= \
0.33 GW(el) =
Breeder Reactor Reprocessing
1 GW(th) Plant
Energy
0.33 GW(el) Pu for sale
—_— 0.3 kg/day
0.67 GW(th) E==——"" P
- e et
Irradiated
Fuel L
2.3 kg/day ission Products
kg/day
BREEDERS ARE NECCESSARY BECAUSE THE WORLD RESOURCES OF 'GOOD'
URANIUM ORES ARE RATHER LIMITED
if one con-
but the very
A tremendous increase in available uranium ores occurs
siders not only the classical ores (>1000 ppM uranium)
abundant granites with 80 ppM uranium and thorium.
Even if the price of uranium should increase a hundred fold the price
of the raw fuel per kWhr will be no higher than it is now for light
water reactors (since the uranium contains only ~0.4% of burnable
U-235).
1 kWhr (e) £ 3 cents US, of this fuel % 0.8, from this plutonium
0.5 ecents.
1l g Pu 2 1 MWDth = 24000 kWhr(th) = 8000 kWhr(e) % 40$/g Pu
for 1 g Pu £ 1.5 g natU
e
(114
present price 1 kg U = 30 $; 1 g 3¢
assume future extreme price 1 kg U = 2000 $ lg
2 3
1l g Pu will require 3 $ worth of Unat
Each gram of Pu will be not 40 $ but 42 $ per g.
The price of electrical energy increases to 3.25 ¢/kWh(e)
World Resources of Nuclear Fuel
UppM
2000 | 5 iD
16 ppM in Ocean natBLi ~30 ppM
16 in crust
1000 10 2.2xlO2 kg i 6 -
ut Li is only
6x10 MJ or 2.4 ppM
/ 6x1016 kg 6Li
00 4 i
> / Granitp 20 nat g U 10.0x102% Mg
e 4 ppM in
& crust
2 16 5%
$/kg 8x10™" kg
: 5%
7x102u MJ ’ug%
—_—
Us’g 200 o | 50
Consumption
23Th 12 ppM in crust
s NSZi_gan.
100 = o — o — Granitp 100
A (y 8x10”° popu-U + Th 16
= lation at 21 x 10 kg
15 kW per capita 24
50 o & Cumulative { L 500 17 x 107" MJ
=Y World needs
to 2000 |
| without breeder |
I | | Complex Ores
20 o | | - 500
l : l D, Li = 2.75 MeV/atom = 2.75 x 10%" J/kg
‘y & High Grade Ores 1000 Th, U = 0.83 MeV/atom = 8.65 x 1013 J/kg
‘16 Earth's crust down to ~20 km % 2,4 x 19%° kg
10 T = = T-
100 109 12080 1011 1ol2 1913 1ot 1015 1o g
Ocean = 0.14x 10 kg
14
FUTURE ENERGY NEEDS COULD BE VERY GREAT BUT WOULD STILL BE MET FROM
NUCLEAR SOURCES IN THE FIRST INSTANCE
TODAY: 3.8x109 people x 2 kW/cap. = 7.6 TW = 2.4x10°°J/year
FUTURE: 8x109 people x 15 kW/cap. = 120 TW_ = 38x1020J/year
1 gram (U,Th) = 1 MW/day = 8.64x1010J
38x1020J/year 4,4x1010g/year = 44000 tons Uranium and/or
Thorium per year
But granite contains 80 ppM U+Th so the annual need for granites
as '"fissile' ores will be 550 million tons.
At the present time coal production alone is 4 times greater!
Granite: Energy cost for 15 ppM U and 60 ppM Th.
Granite 1s the main constituent of the earth's crust (up to
20 km deep)
lO6 g
68.6 g/mol
Free egthalpy of formation of granite = 210 kcal/mol '
8.8x10°J/mol
?eghfiglogical free energy (electrolysis?) = 1.8 MJelec/mol +
’ therm/mol 10
Technological free energy for 1 ton granite = 5.2x107J.
Amount of wuranium and thorium = 75 ppM = 75 g =
T5MWD total =
A 6.48x1012%
Amount of electricity at 40% efficiency = 2.6x1014g
= 1.46 x 104 mol
1000 kg granite =
World Population
X 109
1205000 1000 %/oo Solar Energy
9 N on Earth's Surface
8 s f$>
120 4 1 %/00 {promille)
prodfction
present 160 y 200 y
14 T
Power per capita
kW
USA 50
>
si°&
> 4 10 J
I
T I 1] fi
present 100 y 200 years present 90 100 208 years
15
ONE OF THE BIGGEST CONSTRAINTS TO FISSION ENERGY IS THE PROBLEM
OF FISSION PRODUCT MANAGEMENT
Each fission releases ~200 MeV; 1 Joule = B.lxlolo fissions.
1 watt = B.lxlO:LO fissions per second equivalent to 6.2X1010 fission
product atoms per second.
In steady state very roughly 1 Watt of power ~1 Curie of fission pro-
ducts (1 Curie = 3.7x1010 disintegrations per sec).
All fission products are beta unstable (neutron rich nucleil)
Some fission products are long lived, comparable with a human life
span or even the life span of an element of social organisation.
@ beta stable Watt
Obeta unstable T
J \beta decay -~
83 -
Sm-l.Sl
| \‘ Cs=-135
-8
1 daly lqu 109'd kyez'n' 10 yr 100 y : 1000 y
57 10" 0% 10° 107 10% 10° 1020 1ot
a
time, sec
16
THE PROBLEM OF FISSION PRODUCT MANAGEMENT TS VERY DIFFICULT AND
REQUIRES A SOPHISTICATED SOLUTION
The possibilities of radioactive waste management are:
1. Without the use of nuclear transmutation; that is the fission
product nuclides are not changed, but merely removed and isola-
ted; as for example a rocket to the sun, in discused salt mines
or in the polar ice-cap.
2. By using nuclear transmutation in which the nuclear properties are
so fundamentally changed that the transmuted products are short
living nuclides which decay after a short retention time to a
stable nuclide.
In this second class of waste management techniques a number of exotic
methods have been discussed
- gamma laser excitation (does not exist)
- underground neutron irradiation due to fission or thermonuclear
explosion (e.g. more than 3000 explosions of 100 kT per year in
USA 2000 only)
- bombarding by protons (e.g. a 10 GeV accelerator with 1 Amp)
- neutron irradiation in a thermo-nuclear fission reactor (does not
exist)
- neutron irradiation in a fission reactor (only pessimistic opinions).
1%