-
Notifications
You must be signed in to change notification settings - Fork 10
/
MCFR_UCLA_Ottewitte_thesis.txt
18782 lines (10780 loc) · 423 KB
/
MCFR_UCLA_Ottewitte_thesis.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
UNIVERSITY OF CALIFORNIA
Los Angeles
Configuration of a Molten Chloride Fast Reactor
on a Thorium Fuel Cycle
to Current Nuclear Fuel Cycle Concerns
A digsertation submitted in partial satisfaction of
the requirements for the degree
Doctor of Philosophy in Engineering
by
Eric Heinz Ottewitte
1982
The dissertation of Eric Heinz Ottewitte is approved,
Moses Greenfield
ClE e AHO&;M
Steven A, Moszkowski
e
Gef/id Ce Pomraning
2 z{flfi%
William Kastenberg, Commiitee Chair
University of Califormia, Los Angeles
ii
Table of Contents
1.0 Introduction
1ol Overview of Current Nuclear Politics and Technology
1e1e1 Nuclear Fuel Cycle Problems and Their Politics
1a1e2 Technical Solution: Thorium Fuel Cycle
1e¢143 Technical Solution: Fast Halide Reactor
1e1e3e1 Advantages of fluid~fuel reactors
1elelde2 Introduction to the MSFR
1,2 Historical Review of lMolten Salt Activities
Te2e1 American Activity
1e1 Development of the USBR
1.2 Development of the MCFR
o2
o2
1e242 European Aciivity
Poland/Switzerland, led by Miecyzslaw Taube
France
261
242
0243 Engla.nd
2¢4 Soviet Union
1.2.3 Summary MSR State-of-the-Art
2.0 Contemporary Conceins Which Affect Choice of an Advanced Concept
21 Nuclear Fuel Cycle Waste Management
2e.1+1 Characterization of Spent Fuel Wastes
2.1.1.1 Gases
Zeiele2 Solid fission products
2elelel Actinides
241+144 Unique biological hazard of plutonium
2e1+2 Management of Spent Fuel Wastes
2.2 Non-Proliferation
22«1 Development of US Policy
2e2¢2 Relationship Between Nuclear Electric Fower and
Nuclear Weapons Deveiopment
iii
2e3
2,4
2e2e3
2.2.4
2e2e5H
2e2e241
2ele242
2e2e243
Extent of the spent fuel problem
Question of reprocessing
Attitudes on return of Pu
Which Reactor Fuel Contains the Least Proliferation
Danger?
202.3.1
2424342
Weapons-—-grade material
Unique 233, daughter radiation
Preignition '
238 . . .
Pu high heat generation
Denaturing and other technical fixes
Summary
The Significance of Stockpiles
2elelal
2e2e4e2
Peacefnl vs, military explosives
What a2bout unsafeguarded production reactors ?
Fuel Cycle Vulnerability to Diversion
2424541
2e2eDec
2e2e503
2e2e5e4
2e2e5eD
2424546
Once-~through fuel cycle
Solid-fuel reprocessing cycle
Molten~salt fuel cycle
To reprocess or not to reprocess
To breed or not to breed
Fusion reactor vulnerability
Fuel Utilization
2e301
20342
20343
24344
Earth's Resources
Use of Taorium
Intercomparison of Reactor Concepts with Regard to Fuel
Utilization
Use of Both Th and U Reserves
Strategic Security-
2edel
Present Susceptibility
2adelal
20441.2
2edalel
2a4e1e4
Subnational blackmail
Sabotage
War
Summary
iv
2ede2 Potential Remedy with an-MSR
2.5 Summary Design Principals for an Advanced Reactor System
2.5«1 HWaste Management Restraints
2e5¢2 Non-Proliferation Restraints
2659¢2 Fuel Utilization Restraints
2¢5«4 Strategic Securiiy Restraints
2.6 Promise and Unigueness of ithe Molten Chloride Fast Reactor
on a Thorium Fuel Cycle
24641 Advantages of the llolten State
24642 Advantazes Stemming from the Exclusive Use of Therium
24643 Advantages of Continuous Reprocessirg
2ebed Advantages of a Very Fast Nevtron épectrum
2.6.5 Spinoff Ability to Digest Existing Spent Fuels
24646 Inherent Disadvantages and Limitations ‘o MCFR
30 Concept Design
3.1 Choosing the Reactor Configuration
*3.1.1 Maximizing Breeding by Minimizing Neutron Moderation
in the Core
3e1elel BG potential
3e1e1,2 Minimizing neutron moderation
3e1e2 Maxrimizing Breeding by Minimizing Leakage
31421 Effect of an inner blanket
3ela3e2 Size of the outer blanket
3a1e2e3 Hoderating the blanket neutron spectrum
{0 enhance capture
Je1e264 Neutron reflector and damage-shield
Je2
3.1.3 COI‘e a.nd
le1ed
Blanket Design
Choice of geometry
Choice of number, size,and spacing of iubes
Location of tubes
Axial blanket and neutron leakage
Method of Reactivity Shimming
3e1e5 Summary Guidelines on Reactor Configuration
Reactor Thermohydraulics
3e2al
3.2.2
3e243
3,244
Means of Cooling the lloliten Szlt Fuel
Out-of-core heat exchanger
In-core heat exchanger across tubes
In-core direct contact heat exchange
Blanket cooling
Power Density in an ISFR
- 3424244
13424245
3424246
3e2e247
3424248
Primary
3624341
3024302
3624343
Inherent high power density in FKSFRs
Realistic range of power densities
High neuiron flux levels and radiation damage
in fast reactors
Impetus for high temperature operatiou
Adjusting power density through criticel mass
Reactor design power
Reactor power iistribution
Summary
Coolant Velocity
Maximizing velocity apd minimizing pumping
power
Corrosion dependence on velocity
Velocities in similar systems
Operating Temperatures
3e2e441
3e2e442
3e2e443
3e2eded
3e2e4ded
3424446
3.2.441
Upper limits on fuel salt temperature
Hinimum fuel salt temperature
Minimum secondary coolant temperature
Resirictions on AT across heat exchanger walls
Restrictions on temrzrature differences wiinin
the primary circuit
{4t,t} in other HCFRs
Sumnary
vi
3.3
Je245 Design of the Primary Circuit Heat Exchanger
1,2,6
e /¢
3e2e561
3024542
3e24543
Leat transfer coefficient
Minimizing fuel inventory in the heat exchanger
Frimary fluid volume in heat exchanger and
associated plena and piping
Primary Circuit Arrangement
General guidelines
. Location of pumps and heat exchanger
Parallel =mbck-o-nels
Tube channels in series .
Summary
3.2.7 Reactor Thermohydraulics Summary
Choosing the Salt Composition
3e3.1
3e342
3343
Introduction
3.341«1 Neutron spectrum
3.341.2 Chemistry
3e3e1e3 Eutectic melting point
3e3e1e4 Heat transfer parameters
3.341e5 Densities
3e3e1e6 Viscosities
3e341e7 Specific heats
3.3.1.8 Thermal conductivities
3e3e149 Summary
Choice of Halogen
U W Lo W W
wwwwf»wwww
NNNN:ONI\)NN
\DOD—-JO\:H-PUJN"‘
Neutron moderating effect
Neutron absorption
Transmutation products
Melting point
Beiling point and vapor pressure
Chemical behavior
Cost and availability
Density
Summary
Choice of Actinide Chemical States (Stoichiometry)
Actinides inherent to an MCFR(Th)
Melting and boiling points
Chemical behavior
Choice between UCLl, and UCl
3 in the core
Chemical states in
the blanfet
vii
3.3¢4 Choice of Carrier Salt Cation
3e3eD
3.4 Structural
3ede
3ede?2
3ede3
3e3ede1 Neutron moderating effect
3e3ede2 Neutron absorption
2.3e4¢e3 Transmutation products
3e3eded Melting point
Je3ed4eH Boiling point and vapor pressure
3e3e446 Chemical behavior
3e3edeT Cost and availability
3e3e448 Density
3¢3s449 Heat transfer coefficient
3e3e441C Summary
Choice of Relative Proportions of Actinides and Carrier
Salt
343541 Neutron physics of the ThCl 4/11013 ratio in the
core mixture
Je3e 50 2 Density
Je3e5e3 Viscosity
3e3¢5¢4 Specific heat
3e3e95¢5 Thermal conductivity
3e3e5.6 Heat transfer coefficient
3¢3¢5«7 Choice of core mix
3¢3e5.8 Choice of blanket mix
3¢3e5.9 Butectic mix for flush salt
Materials
General Consideration and Criteria
3.4¢1e1 Plant-life econoxzics
304e142 Corrosion, general
3e¢4e1e3 Corrosion by electrochemical attack
Jedele4 Corrosion protection
3edeled Thermal and radiation-induced expansion
Chemical Reactions in an MCFR
3040 201
3eda2.2
Reactions with fission~produced mutants
The effect of UC14 presence in the core salt
Candidate Materizls for an MCFR
Overview on metals
do alloys
Graphite
Heat Exchanger considerations
viii
3.5
304.4
3eded
30406
3edeT
Materials for Core/Blanket Interface (Tubes)
iaterials for Reactor Vessel
Maierial for a Lead Secondary Circuit
3.44641 Steam generator tubes
3e4e642 Remainder of the circuit
Material for a Helium Secondary Circuit
Physics of MCFR(Th) and Its Fuel Cycle
3501
3a5e2
3e5e3
3454
3e¢5¢D
3e546
Nuclear Models of an MCFR
3454141 Definition of the reactor geometry
3.54142 Use of spherical geometry for neutronics
calculations
Neutronic Calculational Methods
3.5.241 Spatial mesh
356242 Angular quadrature
349¢2e3 Convergence criteria
Neutron Cross Sections
345+341 Bondarenko 26 group Set
3e5¢342 Twenty-six groups, Pl set from ENDF/B-IV
3¢De3el} Effecis of resonarce self-shielding
Transmutation Chains and Fquations
3e¢5¢441 Chains for actinide tragfimutations
345¢4e2 Chain for build-up of U-parented radio-
activity
Principal Physics Metrics
3e5¢5¢1 BG: actual breeding gain
3e5¢5¢2 BGCX: BG extended to zero neutron leakapge
3e5¢5¢3 BGP: BG potentizl zssociated with the core
spectrum
305.5.4 ¢ (COI‘E)
3450505 <EV 0
3¢5¢5.6 Power density
265¢5.7 ¢ {vessel), total and > 100KeV
3e5s5¢8 Fuel inventory and doubling time
Fuel Cycle Modelling
3¢5¢6s1 Fuel cycle model
ix
346
305.7
3e5e8
30549
345610
3e5611
345612
2 Equilibrium fuel cycle
«3 On the choice of U removal rates ¢ and b
Reactor Design: Configuration Trade Studies
3¢5«7e1 Inner blanket study
3eHeTe2 Optimum outer blanket thickness
3¢5aT7«3 Reflector
3e5¢Te4 Core tube material
Reactor Design: Controlling the Core >>°U/234y Ratio
3.5¢8.1 Basis for studying the ratio
3e548.2 Effect of the ratio on spectrum, BG,and Pu presence
3eDe8s3 Effect on reactor fissile inventory and doubling
time
3¢5¢8.4 Deducing the ratio on equilibrium cycle
Reactor Design: Choosing the Core Salt ThCl4/U01 Ratio
3
3.5;9.1 Effect on BG
3e5¢9.2 Effect on reactor fissile inventory and doubling
time
2e5¢9e3 Effect on power density and flux leve§§3 234
34549.4 Effect on actinide fission rates and U/“°™y ratio
Reactor Design: Choosing the Core Carrier Salt (¥aCl)
Content .
3,5¢1041 Effect on BG
3451042 Effect on reactor fissile inventsry and doubling
time :
34561043 Effect on pover,iensiiy and flux levels
3¢5410.4 Effect on EBXU 2°3U ratio
Mutation Effects
3e5s11e1 --Significance of §3§inides which emit alphas
3.5¢11e2 Significance of U production
3eDe11e3 Impact of fission product concentration upon
neutron physics performance
Summary
Safety & Kinetics
34641
Fhysics of Reactor Safety and Xinetics
W6e1a1 Effective delayed neutron fraciion
:6.1.,2 Prompt neutron lifetime, 1,
3
2.6,
3e6e1e3 Temperatus coefficient of relativity
3ebe2 Analysis of Normal Operations
3643
3e¢7 Tuel Processing
3eTe1
3eTo2
3073
374
Reactor startup
Reactor control
Reactor stability and inventory ratio
Reactor shutdown
Change in physical properties due %o transmutations
of Accident Situations
Small leakages
Loss of flow
Structural failure
Emergency cooling
Comparison of molten salt reactors to others
Precipitation-out of cutectic mixtures
Boiling~off of sali mixtures
Containment
Resistance to extermal threat
0 Molten salt combustion support
Principal Salt Reprocessing Methods
Chemistry of the heavy elements
Solvent extraction from aqueous solution
Volatility processes
Pyrometallurgiczl processing
Molten salt elezirolysis
Core Salt Processing
3eTe
*je
347
Je7
37
3e7
3eTe
3e7
3.7
3eTe
NNI\):\JI‘OI\)N
o
\ooa - OZW\N YR -
I\)N
.
Blanke%
Starter
3eTedel
Recovery options
Continuous removal of mutant gases
Removal of non-gaseous fission products
Control of the oxygen levels
Removal of sulfur impurities
Maintaining the chlorine stoichiometry
Storing troublesome fission products by
using them as carrier salts
Comparison to MSBR reprocessing
Materials requirements
Salt Processing
Fuels
Starter fuel for the core
xi
3.8
3¢9
147e4e2 Preparation of ThCl, for the blanket
4
3¢TeH Fuel Cycle Summary
Safeguards
3,81 National Fuel Inventory
3,8,2 In~plant Diversion Potential
34843 Facility Modification
3.8+4 Desired Radioactivity in Transported Breeding Gain
3¢8.5 Radiological Sabotage Threat
Access and Haintenance
3+9.1 Compactness of an IMCFR
3¢9.2 Intrinsic Reliability
34943 lNSRE Experience
3+9+4 Comparison of Primary Circuit Configurations
3495 _Reactor Maintance/Replacement Procedure
3496 EReactor Shielding
3,10 Auxiliary Plant
3.11
3+1041 Power Cycle Options
34104141 Intermediate ligquid coolant for steam cycle
34104742 Coolant for gas cycle
3.10,2 Secondary Hardware: Pumps
341043 rilling, Draiqing, and Dump Sysiems
3010s4 Overall Plant Size
Ecofiomics
Je11a1 British Study Results
3el1lelel - Capital-costs
3e11e142 Fuel cycle costs
Je11e143 Summa.ry
13
34.11.2 Transportation Costs
3e11e3 OQutage Penalties
341144 Other Cests
4,0 Summary
4e1 Pu, Proliferation, Safeguards, Security,and Waste
Management
4,2 Reactor Design
4.3 Technical and Economic Feasibility
5.0 References
xiii
1938 August 1
1957--1961
1962
1962
1962-1963
1963
1963-1973
1968-1969
1973-1975
197 5~Present
VITA
Born, Cincinnati, Ohioc
Chemical Engineering Cooperative Student
with the Aircraft Nuclear Propulsian Proj-
ect, General Electric Co., Cincinnati, Chio
Ch.E. University of Cincinnati
Summer Job as Technical Zditor, Mound Laboe
ratory, Miamisburg, Ohio
Laboratory Assistant, Phoenix Memorial Lab-
oratory, Ann Arbor, Michigan
M5. Nuclear Zngineering, University of
Michigan, Ann Arbor
Member Technical Staff, Atomics Internaticnai,
Canoga Park, Califormia
Atanics International Assignment to the National
Neutron Cross Section Center, Brookhaven National
Laboratory -
Guest Scientist at Swiss Federal Institute for
Reactor Research (EIR), Wuerenlingen, Switzer=-
land
Scientist at Idaho National Engineering Lab.;
Instructor with University of Idaho at Idaho
Falls
xiv
ABSTRACT OF THE DISSERTATION
Configuration of a Moltien Chloride Fast Reactor
on a Thorium Fuel Cycle
to Current Nuclear Fuel Cycle Concerns
by
Eric Heinz Ottewittie
Doctor of Philosophy in Engineering
University of California, Los Angeles, 1982
Professor William B. Kastenberg, Chair
Current concerns about the nuclear fuel cycle seem to center on
waste management, non-proliferation, and optimum fuel utilization
(including use of thorium). This {thesis attempts to design a fast
molten-salt reactor on the thorium fuel cycle to address these concerns
and then analyzes its potential performance, The result features
1¢ A simplified easy-to-replace skewed-tube geometry for the core
2. A ve}&-hard neutron spectrum which allows the useful con-
sumption of all the actinides (no actinide waste)
Je Reduced proliferation risks on the equilbrium cycle compared
to conventional fuel cycles because of the absence of car-
cinogenic, chemically-separable plutonium and the presence of
232U which gives a tell-iale signal and is hazardous to work
with
4e A breeding gain in the neighborhood of 0.3
XV
1.0 INTRODUCTION
1.1 Overview of Current Nuclear Politics and Technology
1elel Nuclear Fuel Cycle Problems and Their Politics
In recent years a number of concerns cover the nuclear fuel cycle .
nave arisen. A principal irritant is plutonium (Pu) production in the
existing light water reactor (LWR) uranium fuel cycle and in the fast
breeder (FBR) extension thereto. Concerned individuals fear that the
presence of Pu stockpiles mey promote the proliferation of nuclear
weapons, covertly or overtly, among nationzl and subnzational (eege
terrorist) groups.
In respornse to this concern, President Ford announced that the US
would no longer consider reprocessing of LWR fuel to be a foregone
conclusion. The alternative of course is to stockpile or to bury spent
fuels, thereby creating a problem of actinide waste management, That
would appear to be less than an optimum ecclogical alternative as much
238
of the urenium mined (mostly U) weculd never be used: mining trans-
forms mountain containing 10,000 partis of embedded uranium from natural
to machine - processed state for the recovery of T2 parts fuel, Of
that, reactors consume 7 - 10 parts; a few paris change into plutonium
and the rest currently becomes other -~ actinide waste,
If commercizl FBRs ever appear, the associaied fuel cycle must
21so contend with higher actinides such as americium and curium, Heat
source rate and alvha decay toxicity may economically prohibit their
fabrication into fuel rods,
These and other concerns also influenced President Carier to slow
dovm the plans for commercial FBRs.
1e1e2 Technical Solution: Thorium Fuel Cycle
The thorium fuel cycle solves some of these problems, By
starting with a material which is lower in atomic weight (A=232
vse 238) this fuel cycle eventually produces far less alpha-active
waste (especially carcinogenic and weapons-grade Pu) than the 238U/
233
Pu fuel cycle., Though U from the Th fuel cycle makes justi as
232
good a nuclear explosive, ii 1s always accompanied by U whose
dauchter decay productis emit 2 highly-penetratinz semma radiation.
This makes 233U hazardous to work withe It also signals its location
and transport.
1e143 Technical Solution: Molten Salt Fast Reactor
1ele3e1 Advantaczes of fluid=-uel reactors. Fluid-fuel reactors
continuously add fuel and renmove fission products and require no fuel
refabrication, Molten-salt reactors (MSR) have been more extansively
developed than other fluid-fuel power sysiems. They appear to offer
advantzges in limiting the proliferation of nuclear explosives: the
fuel cycle inventory of weapons~grade maierial outside the reactor is
very small and concentrated at the power plants; little stockpiling
or shipping of weapons-grade fissile materials occurs.
1eT14362 lLatroduction to the MSFR, Beginning shortly after World War
IT but extending into the TO's several laboratories looked at molten
sclt fast reactor (MSFR) concepts, Interest generally followed the
fortunes of the thermal MSR and so has waned in recent y=ars, Through-
out this time, the inherent absence of cladding in an MSR has hinted
of a neutron economy sufficient for breeding,
A thermal reactor doesn't breed easily; it requires careful
design and continuous reprocessing to minimize nonproduciive neutron
caztures in fission products, core sfiructural materials, and control
poisonse An MSFR is not so sensitive; it has no moderator and little
internal siructure. Cl and limited alkali (4ypically Na) are the
lightest materials present. Therefore, the neutron spectum remains
fast and fission products absorb far fewer neutrons,