-
Notifications
You must be signed in to change notification settings - Fork 10
/
ORNL-1395.txt
2227 lines (1120 loc) · 31.8 KB
/
ORNL-1395.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
| 4T, P
l Jy ;fi‘?‘e iRcy ;
’ 15, ('O{,_l_:‘p(l}i?l{?fl R}r
..u.ll- N j,.l_-l_ -I-_ I. A . .-I-I\ EMS L .. .- I O_?'.T
' (T | | [ || e {1
; a : lIHM “||I‘||H""H||H“ ‘l “H M H'I ORNL-1395
' PHYSICS
. ’ 3 4455 0353177 4
, ‘.v FORCED CONVECTION HEAT TRANSFER
IN PIPES WITH VOLUME HEAT SOURCES
WITHIN THE FLUIDS
3
7
P
"-I.‘.
E I "‘ et
- At ! i 1= NATIONAL LABORA
£ CENTRAL RESEARCH LIBRARY
g ‘-: : DOCUMENT COLLECTION \ i
LIBRARY LOAN GOI'NV
DO NOT TRANSFER TO ANOTHER PERSU
IR LE L UL else to see this
document, send in nome with document
and the library will arrange @ LR
¥ - - z WE=C R ]
- T8+,
OAK RIDGE NATIONAL LABORATORY
OPERATED BY
o CARBIDE AND CARBON CHEMICALS COMPANY
. A DIVISION OF UNION CARBIDE AND CARBON CORPORATION
| /]y
bl & POST OFFICE BOX P
" OAK RIDGE. TENNESSEE
UNCLASSTFTED
- ORNL~-1395
This document consists of 39
pages. Copy.5 of 335 copies.
Series A.
Contract No. W-Th05, eng 26
Reactor Experimental Engineering Division
FORCED CONVECTION HEAT TRANSFER IN PIPES WITH VOLUME
HEAT SOURCES WITHIN THE FLUIDS
by
H. F. Poppendiek
L. D. Palmer
DATE ISSUED
OAK RIDGE NATIONAL IABORATORY
Operated by
CARBIDE AND CARBON CHEMICALS COMPANY
A Division of UHESIEEE%EQEZT Corporation \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
7
F\AH\ES
3 wusk 0353
gy& —war LED
o
W
o
8-13,
.
15.
16,
17.
18,
19.
20.
21.
22,
23.
2L .
25,
26,
27 .
28,
29.
30.
31.
32.
33.
3k
35.
36.
37.
38.
39.
LO,
L1.
79.
80.
81-335.
INTERNAL DISTRIBUTION
G. T. Felbeck {C&CCC)
Biology Library
- Health Physics lerary
Metallurgy Library .
5-6. Training School Libgary
7. Reactor Experimental " "\4.
Engineering Library
Central Files '
C. E. Center
Larson
. Humes (K-25)
Emlet (Y-12)
Weinberg
Taylor
Shipley
Winters
Vonderlage
Briant
Swartout
Lind
. Steahly
Snell
ollaender
Kelley
Fretague
Clewett
Morgan
Felton
Householder
Harrill )
Billington
Cardwell
King
. Lyon
Miller
Briggs
* o o - o o o & o
o @ o o o o
o
S o o o o o
° o o o o
a
o
Fib-HJFJCthC>>-¢4P:C)E:?:?-?-hdUJ§4fljde)F1F1>-t*E:C)
aEEsonunihnnNIDoegSInN o QrOOQOEO T =W E
o
ORNL 1395
Physics -
L2. A. S. Kitzes
Sisman
43. 0.
L5.
L6.
o E
SHrouREEREdYoOaEsmnoEsaf
e 9
o a S
9o
U
O
(]
o e
< a o
«
o~
O
SO NS FOMOZE G YN S g = SO
EXTERNAL DISTRIBUTION
C. R,
W. J.
Russell, AEC, Oak Ridge
Larkin, AEC, Oak Ridge
o Wo
B,
S
OD
Stoughton
Graham
. Gall
Poppendiek
Beall
Breazeale
Gill
Cowen
Reyling
Skinner
. Berggren
Bettis
Bradfute
Cooper
B.
o
"IJH:UZUJO"UCANb"U
Moo= e
—t
L=
-~
oy
e
11
Cottrell
Coughlen
. Cristy
Ergen
Farmer
Fraas
Hamilton
Harrison
. Hoffman
Kasten
. Lang
. Lansing
barsky
. Lynch
» Mills
Palmer
Powers
Hedmond
. Savage
.Wislicenus
Zmola
Yiven distribution as shown in TID-4500 under Fhysics
Category
DISTRIBJTION PAGE TO BE REMOVED IF REPORT IS GIVEN PUBLIC DISTRIBUTION
TABIE OF CONTENTS
Page
SUMRY . . . . . . - . - . . - - . . . ® - . ] - L"
NOMNC LATIJRE » . . - . . . . . . . . . - . . . - . 5
INTR ODUC T I ON - . - . - . . * o L4 - * - ® ® - . * + 8
LAMINAR FLOW ANALYSTIS . . « ¢ ¢ ¢ ¢ o « o & o o « o 10
':EURBUI.EI\IT FIIOW ANALYSIS . * - . . - . . * - . ® ® - . * 15
A. Radial Heat Flow Distribution. . . . . .+ .« « +« .+ . 19
B. Radial Temperature Distribution . . . + « « « « « 19
I‘minar Sublayer * * ® » - - * . - - » » . . 21
Buffer Layer. - * - - - - -* . [ ® e . * . - 21
Outer Turbulent Layer. . .« + ¢ =+ o« o o o s s - 23
Inner Turbuwlent Layer. . . .+ « « o « o o o o 2L
C. Difference Between Pipe Wall and Mixed-Mean . ., . . . . 25
Fluid Temperature
D. Superposition of Boundary Value Problems (18) and (19). . . 28
DISCUSSION . . . v &4 &+« o o o o o o o o o o o .« e 31
APPENDIX 1. ¢ & & & ¢ o o o« s s o o o o o o« = « . 32
APPENDIX 2 . . & o v o « o o o s o +« o o o o . . 34
APPENDIX 3. . ¢ o o o o o o o o o o s o o o o . . 37
REFERENCES . . +« « o o o o o o o o o o o o« o « o « 29
SUMMARY
This paper concerns itself with forced convection heat transfer in long,
smooth pipes whose flowing fluids contain uniform volume heat sources; also,
heat is transferred uniformly to or from the fluids at the pipe walls. Di-
mensionless differences between the pipe wall temperature and the mixed-mean
fluid temperature are evaluated in terms of several dimensionless moduli. These
analyses pertain to liquid metals as well as ordinary fluids.
NOMENCLATURE
Letters
cross sectional heat transfer area, ££2
fluid thermal diffusivity, fte/hr
parameter in equation (f), ft/hr
parameter in equation (23), dimensionless
fluid heat capacity, Btu/lb Op
parameters in equation (26), dimensionless
parameters in equation (31), dimensionless
parameter in equation (h), dimensionless
gravitational force per unit mass, ft/hr2
parameters in equation (34), dimensionless
heat transfer conductance, Btu/hr ft& OF
fluid thermal conductivity, Btu/hr ft2 (°F/ft)
fluid pressure, lbs/fte o
heat transfer rate, Btu/hr
radial distance from pipe centefline, 't
radial position at which the reference temperature
tq is stipulated, ft
pipe radius, ft
parameters in equation (33), dimensionless
fluid temperature at position n, °F
a reference temperature at radius rg, °F
mixed-mean fluid temperature, °F
O g R R e 1w
t fluid temperature at pipe wall, Op
o
ty fluid temperature at nj, °F
ts fluid temperature at no, °F
tt fluid temperature at the pipe center, Op
u fluid velocity at n, ft/hr
Uy mean fluid velocity, ft/hr
W volume heat source, Btu/hr £t3
X axial distance, ft
radial distance from pipe wall, Tt
7 fluid weight density, lbs/ft2
€ . eddy diffusivity, £t2/hr
8 friction factor defined in equation (c), dimensionless
p sbsolute viscosity of fluid, 1b hr/ft2 |
D £luid kinematic viscosity, ft&/hr
0 fluid mass density, 1bs hr2/ft*
T fluid shear stress at position n, 1bs/ft°
To fluid shear stress at pipe wall, lbs/ft2
Terms
a'=1-Pr
a''= -0.0304 Pr Reo'9
b' = 0.0152 Pr Re®"?
b'"'= 0.030k Pr Re®*?
.4
~ar
n
np
ny,
Nu
Pr
Re
i
i
i
n
]
It
Dimensionless Mgduli
- (@)
. © °©
Y/ro
Yl/ro
y2/To
YL/TO
h 2r,/k, Nusselt Modulus
97 cp/k, Prandtl Modulus
u 2r,/? , Reynolds Modulus
p
\[_7_;
?
INTRODUCTION
At times it is necessary to determine the radial temperature distributions
in flowing fluids that possess internal sources of heat generation., Consider the
heated-tube system (electric current passing through the tube.walls) which is now
so commonly being used to measure convective heat transfer conductances. It is
of interest to known how much the electrical volume heat source influences the
radial temperature distribution when a significant fraction of this source is
generated within the flowing fluid. Such volume heat source problems also arise
in fluid flow systems in which continuous chemical reactions are being supported
within the fluids; a combustion heating system represents a specific example.
Particular volume heat source systems have been considered in this paper.
Mathematical temperature solutions were developed for a circular-pipe volfime
heat source system for the cases‘of laminar and turbulent flow (referénce 1).
The idealized system to be considered is defined by the following postulates:
1) Thermal and hydrodynamic patterns have been
established (long pipes).
2) Uniform volume heat sources exist within the
fluid.
3) Physical properties are not functions of
temperature.
1) Heat is transferred uniformly to or from the
fluid at the pipe wall.
5) In the case of turbulent flow the generalized
turbulent velocity profile defines the hydro-
dynamic structure.
6) 1In the case of turbulent flow there exists an
analogy between heat and momentum transfer.
A heat raté balance on a stationasry differential lattice reveals the heat
transfer mechanisms which control the thermael structure within the idealized
gystem. At steady state, the heat generated within the lattice is lost from the
lattice by axial convection and radial conduction (in the case of laminar flow)
or radial eddy diffusion (in the case of turbulent flow). These heat rate balances
are expressed by differential equations in the following analyses.
»-
10
LAMINAR FLOW ANALYSIS
The differential equation describing the heat transfer in the pipe system
for the case of laminar flow is
’ .
1-.(,_1:.) 2t r= 2 |ar 28|, Hr (1)
\To oX or or Yep
where,
U, mean fluid velocity in the pipe
t, temperature
X, axial distance
r, radial distance
a, thermal diffusivity
W, uniform volume heat source
7, fluid weight density
Cp> fluid heat capacity
One boundary condition for the problem consists of a uniform wall heat
flux which may be positive, negative or zero,
2'-1?.: (r = ro) = (g’-‘%)o = -~ K %—E (r =. I‘o) (2)
where % is the radial heat flux and (%) is the wall heat flux. The second
boundary condition is, td, a reference temerature, such as a wall or center-
line temperature,
t{r = r3) = ta (3)
Note, the mixed mean fluid temperature may also be specified as the reference
temperature.
11
Downstream from the entrance region where the thermal pattern (tempera-
ture gradients) of the system has become established the axial temperature
gradient, _g.;c_c. , 1s uniform and equal to the mixed-mean axial fluid temperature
gradientl, ('%';t}') . The latter gradient can be obtained by making the following
heat balance. Tllrlle heat generated in a lattice whose volume is :tro2 dx plus
the heat transferred into (or out of) the lattice at the wall must all be lost
from the lattice by convection, that is
Wflroed.x - (._g%) 2nrodx = nroe Up ¥ Cp (_g_:‘.c.) dx (&)
0 m
Hence, in the established flow region the axial temperature gradient is
W- 2 Gki)
2. 28 oo /o (5)
2X \axm u.m'rcp
Upon substituting equation (5) into equation (1), the following total differential
equation results:
2 2
SERESHIE Y-S - “
] £
where F = 1 - .2 (g%) . Equation (6) can be solved by making the change
of variable, z = 4t , or
dr
1. Note, that the mixed-mean fluid temperature at any given axial position
is defined as,
T
Yo
o
ty = /-2—————-——-t i 2 t u rdr
m T = T 2
o Uy T o
/ u 2grdr
0
12
dz f r)2 -1
z _W
a*s*riakfl‘ - (g (7)
The solution of equation (7) 18
2
. dt _ 1 W T const.,
Z = == Pl ]l -] |~ e
T°F /& ( l: (I‘o)] 1) rdr + = (8)
Upon integrating there results
it W r F 1
d--v-r- = E[(EF‘ - l) -2- = § r02:| (9)
The constant in equation (8) was found to be zero from the boundary condition
given by equation (2). Note that the radial heat flow is
dq dt _ Wro T r |’
= -k 2= = — - — —
dA dr 2 (1 - 2F) ry +F (ro) (10)
The desired temperature solution can be obtained by integrating equation (9),
r
To
t -ty = W;};z (2F - 1) ;I-'()--F (%)3 d(%) (11)
1
. t -t _ 2 L
N T
=
where the reference temperature is, t,, the wall temperature. The temperature
solution in terms of the centerline temperature rather than the wall temperature
is given by
15
t -1 - 2 L
s (R R )
2k
where t¢ is the centerline temperature. Equation (13) is grephed in Figure 1
for several values of the function F.
It is often of interest to know the difference between the wall temperature
and the mixed-mean fluid temperature. This difference is obtained as follows:
To
_g'u (to = t) 2nrdr
2
U To
, | |
- /“q (t, - t) (%) a (:—0) (14)
O
Upon substituting the laminar velocity profile relation and equation (12)
to - tp =
into equation (14) there results,
Wr 2 11F - 8
Yo = tm= 3% | =5 (15)
o it e S AR RN e v
4
UNCLASSIFIED
DWG. 16663
1.00
0.90 y
/
0.80
/
0.70 /
0.60 /A
0.50
F=7
0.40
1_11 0.30 /
2 F=i o
Wro 020 / //
2k / /
0.10 A /’/ F=3/4
/ / P,
_@/i
0.0
T — I F=1/2
\\ \/\\
-0.10 < ~
\
N
~0.20 <
~0.30 \§ o
-0.40
-0.50
0o 00 020 030 040 050 060 070 0.80 090 1LOO
I
Mo
Fig. . Dimensionless Radial Temperature Distributions in a Pipe
For Laminar Flow (Equation 13)
e AT B m 2
15
TURBULENT FLOW ANALYSIS
Fluid flow in a pipe under turbulent flow conditions has been characterized
in terms of a laminar sublayer contiguous to the wall, a buffer layer, and a
turbulent core by Nikuradse (reference 2), von Karman (reference 3) and others.
Figure 2 shows the well known isothermal generalized velocity profile and some
experimental data of Nikuradse (reference 2), Reichardt (reference 4), and
Laufer (reference 5). Table 1 reveals some of the specific hydrodynamic relations
for the various flow layers in a smooth pipe; a diseussion of some of the details
of this table can be found in Appendix 1.
The differential equation describing heat transfer in the pipe system for
the case of turbulent flow is
ot o ot Wr
(r) dX DT [ (ru) arJ T (16)
P
where, u(r), the turbulent velocity profile given in Figure 2
e , the eddy diffusivity® given in Table 1
Upon substituting equation (5) into equation {16) for the established thermal
region the following total differential equation results,
) [*- £ (8) ) .
A 0 Q - Wr _ 4 acv
up 7 Cp Yo dr [(a te)r drjl (a7)
2. The analogy between heat and momentum transfer (characterized by the
postulate that the heat and momentum transfer eddy diffusivities are pro-
portional to each other and in fact nearly equal) has been proposed by
Reynolds (reference 6) and used successfully by von Karman (reference 3),
Martinelli (reference T7), and others. Thus, in the present analysis it
is postulated that the heat and momentum transfer eddy diffusivities are
equal.
UNCLASSIFIED
DWG. 16664
25 T T T T T T T T T T T Y T T T
LAMINAR BUFFER TURBULENT
~ SUBLAYER " LAYER T CORE
20
/
15 I
ut /! -
A7
1 ut=3.05 +5.00Iny"
P / ®
10 0
< / )
- / 8
’ o
‘ o NIKURADSE
® REICHARDT-MOTZFELD
A REICHARDT-SCHUH
o LAUFER
10 30 100 ' 1000
y+