-
Notifications
You must be signed in to change notification settings - Fork 10
/
ORNL-1924.txt
2672 lines (1325 loc) · 42.9 KB
/
ORNL-1924.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
o i
- IEEWH I ANP “”Ttfifligm REQ qi-:b
3 4456 03L098L O Reactors-Aircraft Nuclear Propulsion Sys
AEC RESEARGH AND DEVELOPMENT REPORT ) . ... .
A THEORETICAL STUDY OF Xe '35 POISONING KINETICS IN
FLUID-FUELED, GAS-SPARGED NUCLEAR REACTORS
CENTRAL RESEARCH LIBRARY
DOCUMENT COLLECTION
LIBRARY LOAN COPY
DO NOT TRANSFER TO ANOTHER PERSON
If you wish someone else to see this document,
send in name with document and the library will
E M. T. Robinsen
2 "-\
m
: e Prfl fi(‘!"?"
% CLassirrcamon Muanas . _H“““___ na¥
u._‘?.;_']_c?f__
N KE.?TJ;}'T- f g .
e,
L
OAK RIDGE NATIONAL LABORATORY
OPERATED BY
UNION CARBIDE NUCLEAR COMPANY
A Division of Union Carbide and Carbon Corporation
POST OFFICE BOX P * OAK RIDGE, TENNESSEE
i
ANP Authorization Required
ORNL.1924
This document consists of 29 pages.
Copy‘fl 220 copies. Series A,
Contract No, W-7405-eng-246
SOLID STATE DIVISION
A THEORETICAL STUDY OF Xe'35 POISONING KINETICS IN
FLUID-FUELED, GAS-SPARGED NUCLEAR REACTORS
M. T. Robinson
DATE ISSUED
OAK RIDGE NATIONAL LABORATORY
Operated by
UNION CARBIDE NUCLEAR COMPANY
A Division of Union Carbide and Carbon Corporation
Post Office Box P
Oak Ridge, Tennessee
i
T 4450 D3Lga,, .
VPN A WN
MUY AL MANEDECPOQOEROCDPENEIZOOONMANIOCDNONR
*
ANP AUTHORIZATION REQUIRED
#PRNL-1924
Reactors-Aircrff:Nuclear Propulsion Systems
HB679 (17th ed.)
5
§
AR
AN
YR INTERNAL DISTRIBUTION
0 ’
. G. Affel 45. DFFE. Ferguson
. R. Baldock ‘:"“ 46._;'} f. P. Fraas
. J. Barton R H. Frye, Jr.
D. Baumann ): W, T. Furgerson
. G. Berggren #4¥. J. L. Gabbard
O. Betterton, Jr. i . 4#0. H. C. Gray
S. Billington k- 4851, R. J. Gray
Binder e ’#} 52. W.R. Grimes
. F. Blankenship 8 53. W. 0. Harms (consultant)
. H. Blewitt ¥ 54. C.S. Harrill
P. Blizard A 4 55. E. E. Hoffman
D. Bopp 56. A. Hollaender
. J. Borkowski 57. D. K. Holmes
. E. Boyd 58. A. S. Householder
. A, Bredig 59. J. T. Howe
. Brooks (consultant) 60. L. K. Jetter
E. Browning 61. R. J. Jones
R. Bruce 62. W. H. Jordan
E. Brundage 63. G. W. Keilholtz
D. Callihan 64, C. P. Keim
W. Cardwell 65. M. T. Kelley
V. Cathcart 66. R. H. Kernchan
E. Center 67. F. Kertesz
A. Charpie 68. E. M. King
W. Cleland 69. H. V. Klaus
H. Clewett 70. G. E. Klein
E. Clifford 71. J. A. Lane
F. Cohen 72. T. A. Lincoln
H. Coobs 73. S.C. Lind
B. Cottrell 74. R. S. Livingston
D. Cowen 75. R. N. Lyon
H. Crawford, 76. H. G. MacPherson (consultant)
Cromer ‘ 77. F. C. Maienschein
S. Crouse # 78. W. D. Manly
L. Culler 79. E. R. Mann
E. Cunning 80. L. A. Mann
B. Dee 81. W. B. McDonald
H. DeVa 82. F. W. McQuilkin
R. 83. R. V. Meghreblian
E. A. J. Miller
A. . E. C. Miller
R J. G.
§
89.
90.
91.
92.
93.
94,
9s.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112,
113.
114,
115.
116.
—
. A. Swartout
146.
147.
148.
149.
150.
151.
152.
153.
154,
155.
156.
157-159. |
160.
161,
162
163-168|
169]
170.
171.
P. Murray ( i
J. k12) 117. E. H. Tg¥lor
G. J. Nessle W& 118. D. B. J¥auger
R. B. Oliver ‘ 119. J. Bj#¥rice
P. Patriarca 120. E. @F'Van Artsdalen
W. W. Parkinsen 121. F.&. VonderLage
R. W. Peelle 122. J#¥A. Warde
A. M. Perry 123. @ M. Watson
W. G. Piper 124. . C. Webster
H. F. Poppendiek "3‘.,. 1258M. S. Wechsler
P. M. Reyling 12 R, A. Weeks
M. T. Robinson ! 128F A. M. Weinberg
H. W. Savage B ] J. C. White
A. W. Savolainen ‘. w 9. G. D. Whitman
R. D. Schultheiss ) 80. E. P. Wigner (consultant)
H. C. Schweinler ! P(31. G. C. Williams
F. Seitz (consultant) 132, W. R. Willis
E. D. Shipley ' 133. J. C. Wilson
A. Simon I 134. C. E. Winters
0. Sisman 135. M. C. Wittels
M. J. Skinner & 136, Biology Library
G. P. Smith ¥’ 137-138. Central Research Library
A. H. Snell A ’ 139. Health Physics Library
R. L. Sproull (consultant) L FF° 140-142. Laboratory Records Department
E. E. Stansbury 143. Laboratory Records, ORNL R.C.
D. K. Stevens ' 144, ORNL - Y-12 Technical Library,
W. J. Sturm Document Reference Section
C. D. Susano 145. Reactor Experimental Engineering Library
Assistant Secretary of the Aj
R
t
EXTERNALRRISTRIBUTION
AF Ploflf Representcdi ve, Baltimore
AF Pight Representatfe, Burbank
AF P@int Representatife, Marietta
AF ant Representativik, Santa Monica
AF #lant Representativé® Seattle
AFfPlant Representativel@Wood-Ridge
AilResearch and Develofiment Command (RDGN)
Al Research and Develoglient Command (RDZPA)
i Technical Intelligencefenter
Mr University Library :
Fircraft Laboratory Design $tanch (WADC)
NP Project Office, Fort WEh
Argonne National Laborato
Armed Forces Special Weapo
Project, Sandia
orce, R&D
Atomic Energy Commission, Wilshington
Bureau of Aeronautics r
Bureau of Aeronautics General Representative
Chicago Operations Office
172.
173-174.
175.
176.
177.
178.
179-181.
182-184.
185.
186-189.
190.
191.
192,
193.
194.
195.
196.
197.
198.
199.
200-202.
203-206.
207.
208.
209.
210.
211-213.
214-219.
220.
AR
)
Chicago F’ufé‘ roup
Chief of Navalf@esearch _
Convair-General@ynamics Corglbration
Director of Labofigories (WC
Director of Requ|lments (AJDRQ)
Director of Resecih and D@felopment (AFDRD-ANP)
Directorate of Sysffins Maglfgement (RDZ-ISN)
Directorate of Sy:\\'\ s -J,“ hgement (RDZ-1SS)
Equipment Labord;f pC)
General Electric Ga\ibadll (ANPD)
Hartford Area OfficdW
Headquarters, Air ol Special Weapons Center
lLockland Area Officidlll
Los Alamos Scientif;
Materials Laborat"' d s Office (WADC)
National Advisory#F#i#ilktee for Aeronautics, Cleveland
National Advisogiiilfo | ee for Aeronautics, Washington
North Americanp - c. (Aerophysics Division)
Nuclear Develcjililént Cofjikation
Patent Branch shingf' B
Power Plant |i#lbratory (WEDC)
Pratt and Wh Aircraft EilRision (Fox Project)
Sandia Corp#iilfion “‘. |
School of , ion '\Aedicine\;-'\}1 !
USAF ProjlfRand 4
University§
Wright Aig
Technicaf
S aboratory
n l.aboratory, Livermore
COSI-3)
Ridge
ent, AEC, ORO
alifornia Radidl
velopment Centel§
formation Service, 3
Division #ilResearch and Deve}
—
.
0 ® N O bW
_r Ca0
CONTENTS
FEPOAUETION oottt ettt e et ettt e s et s ettt et r b e s shen st s ]
Derivation of the Differential EQuations ............oocoii i e 1
Relations Between the Various Phase-Transfer Rate Constants.............ccooveiiiiiiiiiiine, 4
Solution of the Differential EQUAtions ...........cooooiiiiiii e e, 6
Steady-State Operation of @ Reactor...........cocoiiiiiiiiiiiiciiiceecc e s 9
Kinetics of Xe 32 Poisoning inthe ARE ... e 12
Kinetics of Xe '3 Poisoning in the ART ..o 15
Kinetics of Xe'3% Poisoning During Shutdowns.........coco.ooviiiiiiece e, 18
Nomograms for Xenon-Poisoning Caleulations ...........cocooiiii 18
A THEORETICAL STUDY OF Xe '35 POISONING KINETICS IN FLUID-FUELED,
GAS-SPARGED NUCLEAR REACTORS
M. T. Robinson
1. INTRODUCTION
One of the substantial advantages claimed for liquid fuels in very-high-power nuclear reactors
is the easy removal of Xe'3® from the fuel, with the consequent gains in neutron economy.'
This claim is at least partly supported by operating experience with the ARE,?2 This report is
135 boisoning in a reactor in which this
concerned with a theoretical study of the kinetics of Xe
volatile poison is continuously removed by a stream of sparging gas. The theory is applied to
the experience with the ARE and is used to make predictions for the ART. Some comments on
full-scale aircraft power plants are also included.
The system is assumed to consist of two phases: the liquid fuel and the sparging gas. The
theory is concerned only with volume-averaged concentrations and neutron fluxes. Turbulent
motion of the two fluids is held to assure thorough mixing within each phase. The appropriate
differential equations which describe the behavior of the poisoning in such a system are derived
and solved. Steady-state behavior during high-power operation of the reactor is discussed.
Detailed kinetics of the poisoning during the approach to steady state are studied through a
series of calculations performed on the Oracle. A brief discussion of shutdown behavior follows,
135
A final section presents a rapid approximate method for calculating Xe poisoning in gas-
sparged fluid-fueled reactors.
2. DERIVATION OF THE DIFFERENTIAL EQUATIONS
135
The volume-averaged concentration of Xe in the fuel of a fluid-fueled nuclear reactor
changes because of a number of different processes, as shown schematically in Fig. 1. These
]W. R. Grimes et al., The Reactor Handbook, vol 2 (September 1953), p 973.
2M. T. Robinson, W. A, Brooksbank, and D. E. Guss, ANP Quar, Prog. Rep, Dec, 10, 1954, ORNL-
1816, p 124-125.
L ]
SSD-A-1167
ORNL—-LR~DWG 6430A
PROCUCTION FROM
135
DECAY OF I
LOSS BY FLOW OF TRANSFER OF xe'33 ‘ LOSS BY
GAS FROM SYSTEM NRLLIY LIQUID TO GAS xe'33 N THERMAL-NEUTRON ABSORPTION
SPARGING - GAS y35 | LIQUID-FUEL
o LOSS BY PHASE TRANSFER OF Xe PHASE o
RADIOACT IVE DECAY GAS TO LIQUID * LOSS BY RADIOACTIVE DECAY
DIRECT PRODUCT!ION
IN FISSION
Fig. 1. Processes Governing Xe 133 Poisoning in Fluid-Fueled Reactors.
C e ‘:‘;
A
processes are as follows (see Table 1 for definitions of all symbols used):
1. direct production from fission,
Rate 1 = yxefifgfi ; (2.1)
2. production from decay of 1133,
-aat
Rate 2 = ylzfgb(] - e ) ; (2.2)
3. transfer from the gas phase to the liquid phase,
AegVe
Rate 3 = ——— (2.3)
VL
TABLE 1. DEFINITION OF SYMBOLS
English Greek
Lefl.ers Definifion Leflers Defin”ion
A Area of liquid-gas boundary surface % 100yxeaf/au
ag Activity of Xe'33 in the gas phase a, 100y|0’f/0'u
a, Activity of Xe '35 in the liquid phase a, )\Ir/,B)\J’r = RTS; see Eq. 3.4
cc Concentration of Xe '35 in gas phase a, Radioactive decay constant of 1133
c, Concentration of Xe '35 in liquid a, Radioactive decay constant of Xe!3%
phase
A V, Ve
&0 Concentration of 1'3% at ¢ = 0; see 135
Eq. 4.18 "1 Fission yield of |
T . 135
k* Mass-transfer film coefficient Yxe Fission yield of Xe
L o+ A+ A )\f Rate constant for transfer of xenon
! 4 / L from liquid to gas
k, a, + a2[3)\1r + Ag
)\g vG/VG
b Partial pressure of Xe'!3> in gas
phase A Txe®
0’ Rote of mass transfer A, Rate constant for transfer of xenon
from gas to liquid
R Universal gas constant
AgE 2 O'f Microscopic fission cross section
s Solubility coefficient of xenon in fuel of U233
T Absolute temperature Ef Macroscopic fission cross section
of fuel
t Time
. ) T, Microscopic neutron absorption cross
Ve Volumetric flow rate of sparging gas section of U235
Ve Volume of gas phase 2, Macroscopic neutron absorption cross
v, Volume of liquid phase section of fuel
. Xe 135 poisoning in fuel Oye Microscopic neutron absorption cross
. 135
section of Xe
y “Equivalent poisoning” in gas
phase; see Eq. 2.14 b Volume-averaged thermal-neutron flux
4, loss by radioactive decay,
. Rate 4 = —oc, (2.4)
5. loss by absorption of thermal neutrons,
Rate 5 = Ty PC, (2.5)
6. loss by transfer to the gas phase,
Rate 6 = —)\ch . (2.6)
135
The over-all time dependence of the Xe concentration in the liquid phase is given by the
sum of these six rates:
VG
. -t
L= Vbt yE el - e ) +.7'L_A’CG - oy ogd + Adey . 27)
135
The processes which change the volume-averaged Xe '*” concentration in the gas phase are
as follows:
7. transfer from the liquid phase,
t\chVL
Rate 7 = —— (2.8)
VG
8. loss by radioactive decay,
Rate 8 = ~AyC o ; (2.9)
9. loss by transfer to the liquid phase,
Rate 9 = -A c. ; (2.10)
10. loss by flow of gas out of the reactor,
Yc‘G
Rate 10 = ~
v (2.11)
135
Several ways in which changes might occur in the concentration of Xe in the gas phase have
been specifically neglected; these are:
11. loss by absorption of thermal neutrons;
12. production from decay of 1'33 or from fission. This implies the neglect of transfer processes
(like 3, 7, 9, and 10) involving 1'3% or U235,
135
The over-all time dependence of the Xe concentration in the gas phase is given by the sum
of processes 7 through 10 to be
. Vi ( Vs
Cc = A c, = |ay + A+ — e - (2.12)
Ve / TV,
135
In this discussion of the behavior of a nuclear reactor, the behavior of the Xe poisoning
is of primary interest and is defined as
1000y, ¢, 2.1
X = ————Eu . .
The related quantity y is defined as
]OG'TXQCG .14
Yy = s . .
U
The virtue of this latter quantity stems from the identity
X CL
o (2.15)
y €c
which will be required in deriving a relationship between )\/ and A. By the use of Eqgs. 2.7,
2.12, 2.13, and 2.14 and some abbreviations from Table 1, the differential equations for the
poisoning are written as
. —ant
s o= oagh, +ad (1~ e 3) 4oy — (g + A+ A x (2.16)
y = BAx = (ag + a;BA, + Ay . (2.17)
The above equations apply during the nuclear power operation of a reactor. However, the
behavior of the poisoning during a shutdown must also be discussed. Inthis case it is necessary
to set A, = 0 and to replace the first two terms of Eq. 2.16 by the source term
agdge 3. (2.18)
The boundary conditions needed in solving Eqs. 2.16 and 2.17 are discussed in Sec. 4.
3. RELATIONS BETWEEN THE VARIOUS PHASE-TRANSFER RATE CONSTANTS
The problem of studying the kinetics of Xe!33
poisoning can be simplified by eliminating
one of the phase-transfer rate constants, defined in Egs. 2.6 and 2.10, The total rate of transfer
of xenon from the liquid phase to the gas phase is )\/VLCL. The total rate of transfer in the
reverse direction is AV c . Now, while it probably cannot be realized in practice, there exists
some pair of values (c’&, cz) corresponding to true thermodynamic equilibrium between the two
phases. The “‘law of mass action'’® requires that under these conditions the amount of material
entering a phase be the same as the amount leaving, that is, that
,\vac}: - )\'VGc*(‘;
or
VL CE,
A= A — — (3.1)
VG e
3C. M. Guldberg and P, Waage, Etudes sur les affinities chimiques, 1867,
The solubility coefficient of a gas in a liquid is the equilibrium concentration of solute in the
liquid phase when the partial pressure of the substance in the gas phase is 1 atm. That is,
c* = prS = cX RTS , (3.2)
where the ideal gas law has been used in the form
b = g RT
135
to relate the Xe pressure to its concentration in the gas phase. A combination of Egs. 2.1
and 3.2 gives the desired result:
vV
L
A= A, RTS — .
r f VG ’ (3 3)
whence
a, = RTS . (3.4)
Thus equilibrium solubility data may be used to eliminate the rate constant A
Also, a relation may be derived between the ‘‘true’’ rate constants, z\f and A, and the *‘ap-
parent’’ rate constant,? :\P. The latter is defined by
Net Xe '3% transfer rate = -z\ch . (3.5)
Equating this to the sum of rates defined in Egs. 2.3 and 2.6, it is found that
A, = A - ,\,fi ° (3.6)
Vi cp
or, introducing Eq. 3.3,
c
’\P = Af 1 ~ RTS? . (3.7)
If Egs. 3.4 and 2.15 are introduced, then
Qyy
/\p = A 1 - - . (3.8)
Thus experimentally derived values of )\p may be compared with values calculated from the
solutions to Eqs. 2.16 and 2.17.
The connection of the rate constant )\f to the usual mass-transfer film coefficient may be
shown by noting that the total net current of matter across the boundary between the liquid and
gas phases is
Q"= -NVie, + AVgeg = MV, e, ~ RTS¢g) (3.9)
r
According to the usual mass-transfer analysis,® the total current may be written as
Q" = —k"Ala;, - ag) . (3.10)
4. L. Meem, The Xenon Problem in the ART, ORNL CF-54-5-1 (May 3, 1954).
SG. G. Brown et al., Unit Operations, p 510 f, Wiley, New York, 1950.
Both phases are assumed to be ideal. The xenon activity in the liquid may be replaced by the
concentration. Therefore the standard state in the gas phase must be considered as that pressure
of xenon in equilibrium with unit concentration in the liquid. Thus
a. = pS = RTSc. .
Then Eq. 3.10 becomes
Q" = ~k’Alc, - RTSc.) . (3.11)
Comparison of Eqs. 3.9 and 3.11 yields
k’A
(3.12)
L
In principle, the film coefficient 2" can be computed from the geometry of the system and
the physical properties and flow rate of the liquid fuel through a relation of the type
k’s
= f(SC, Re) , (3.]3)
L
135
where s is a characteristic dimension; D, is the diffusion coefficient of Xe in the liquid;
Re is the Reynolds number of the liquid; and Sc, the Schmidt number, is given by
vy
Sec =
- I
Dy
in which v, is the kinematic viscosity of the liquid. It does not appear practical to calculate
)\f in this way, because of the complicated geometry and flow regime obtaining in the ARE and
ART.
4. SOLUTION OF THE DIFFERENTIAL EQUATIONS
135
The time dependence of the poisoning of a nuclear reactor due to Xe may be expressed
by the differential equations
x = [ (1) + ahy — kyx (4.1)
and
y = Bx = kyy . (4.2)
The source term is
) = agh, + ap (1 = ¢ %) (4.3)
when the reactor is in operation and
fole) = aa&oe—aat (4.4)
|l35
otherwise. The quantity &0 is related to the amount of present at t = 0,
By solving Eq. 4.2 for x, differentiating with respect to t, and combining the results with
Eq. 4.1, the differential equation
y o+ (kg + k))y + (kiky = aBA)y = B ()
is obtained. The solution to this equation may be written as
--K.IZ
y = (I)n(t) + Ae + B_e .
where
1
2 2
q =5 by + &y + ik, — 57 + 40,803]
' J
Ky = (kg + Ry = Ve - k)2 B2
-~ gt
(g + a)BAA, B e
D) = i
kyky — a BAf (k) — ag)lk, ~ ay) - azfi)\?
I
B)lfaacfioe
(ky = ag)(ky - aj) ~ azfi)‘f
Combining these results with Eq. 4.2 yields
() =
1 -K]t 2
where
(CLO + al)kz)\L a])\L(
®](t) = -
kyky = aBAf k) = ag)(ky — a5) — a,BA]
...a.at
%&0 (ky ~ azle
@z(t) =
(k) — a3)lk, - a3) - 2'8)‘?
The most general boundary conditions are
As t — 0, X —> x, and Yy —>yg -
Inserting these conditions into Eas. 4.6 and 4.9, the integration constants become