-
Notifications
You must be signed in to change notification settings - Fork 10
/
ORNL-2396.txt
9434 lines (6760 loc) · 250 KB
/
ORNL-2396.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
- ORNL-2396 -
. Chemistry-General
* " TID-4500 (14th ed.)
GUIDE TO THE PHASE DIAGRAMS
OF THE FLUORIDE SYSTEMS.
Ty, E.Ricei | -
OAK RlDGE NATIONAI. I.ABQRATORY
operdted by
UNION CARBIDE CORPORATION
T for the .
U S ATOMIC ENERGY COMMISSIO“
ORNL-2396
Chemistry-General
TID-4500 (14th ed.)
Contract No. W=-7405-eng-26
REACTOR PROJECTS DIVISION
GUIDE TO THE PHASE DIAGRAMS OF THE FLUORIDE SYSTEMS
J. E. Ricei
Consultant to Qak Ridge National Laboratory from New York University, Department of Chemistry
DATE ISSUED
Ny
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION
PREFACE
A comprehensive study of fused-salt phase equilibria has been in progress at the
Oak Ridge National Laboratory for several years in connection with reactor technology.
In the course of that study, several complex fused-salt ternary systems have become
well enough understood that nearly complete phase diagrams of the systems could be
constructed.! Detailed discussion of the phase equilibria occurring in those systems is
included herein.
Except for the LiF-BeF ,~UF, and NaF-BeF ,—UF, systems, each of the diagrams
of ternary systems included in this discussion was derived at ORNL in the Fused Salt
Chemistry Section, under the direction of W. R. Grimes.
Because it was felt that this collection of fluoride phase diagrams might prove more
valuable if accompanied with a discussion of some of the types of phase relations
illustrated in them, the following treatment was prepared. The purpose is to present
some general principles and explanations which should aid in the reading, interpretation,
and use of the actual diagrams in the collection and of other similar diagrams which
may still be determined. While the relations are usually explicitly shown, at least as
far as they are known, in the temperature-composition diagrams of the binary systems,
the corresponding relations are not always equally apparent in the usual *‘phase diagram”’
of a ternary system of any complexity. In either case, moreover, the diagram does not
show the actual data and observations upon which the diagram itself, essentially an
inference, is based, nor does it give any idea of the amount of work, in experimentation
and in thought, underlying the construction of the diagram. This aspect of the diagrams,
however, is something best presented and treated by the investigators themselves.
All the diagrams in the collection represent ‘‘condensed systems’’:
i.e., they show
the temperature-composition relations between solid and liquid phases under one atmos-
phere of open pressure. For chemical reasons the atmosphere was actually helium or
argon. No two-liquid equilibria were encountered. Limited miscibility of solids is
involved in some of the diagrams, but there are no critical solution (or consolute) points
for solid solution. The discussion will deal only with types of phase equilibria actually
represented in the systems.
We shall treat first the essentials involved in the binary diagrams of the collection,
and then, more extensively, the essential relations for the several ternary diagrams.
The last sections will consider specifically the ternary systems and their constituent
binary systems.
]R. E. Thoma (ed), Phase Diagrams of Nuclear Reactor Materials, ORNL-2548 (to be published).
CONTENTS
P REFACE et ettt ettt e e ea et et ettt ettt et et s eeanaee e i
LIST OF FIGURES L. ettt et et ee et e ee e e en e een e vii
PART I. GENERAL PRINCIPLES
Lo BINARY DIAGRAMS e e et ettt ettt e 3
1.1. Pure Components as Solid Phases ..........ccccoooveviiviieini, ettt 3
1.2, Pure Compounds ..ottt bt bt e, 3
Relation Between Congruence and Incongruence of Melting for a Binary Compound ................ 4
130 S0lid SOIUtION oo et et 4
Continuous Solid SolUtion ..o 4
Miscibility Gap in Solid SolUtion ... i e e, 5
Solid Solution and Polymorphism ..ottt 5
2. TERNARY EQUILIBRIUM OF LIQUID AND ONE SOLID (SURFACES) .o, 7
2.1, Fixed Solid oo e e 8
2.2, Variable Solid (Solid Solution) .o e e 8
Fractionation Path ... e bt b e oo e eseeeat e e et e et ete et e et e e e te et e eeeeae s 9
Equilibrium Path o e et st st 9
3. TERNARY EQUILIBRIUM OF LIQUID AND TWO SOLIDS (CURVES) ..o, 11
3.l REACHON T Y POS oo b ettt e, 11
3.2. Maximum and Minimum Temperature Points ..o e, 12
3.3. Equilibrium Crystallization Process for Liquid on a Two-Solid Curve ..., 12
4. TERNARY CONDENSED INVARIANT POINTS (FOUR PHASES) ..o, 14
4.1. Binary Decompositions in Presence of Ternary Liquid ... 14
PUPE T SOlidS oo ettt 14
Effect of the Third Component Entering into Solid Solution ..o, 14
4.2. Types of Ternary InVariants ... e s 15
Type A Invariant: Triangular or Terminal Type of Invariant ... 15
Type B Invariant: Quadrangular, Diagonal, or Metathetical Type of Invariant .................... 15
4.3. Relations of the Three Liquid Curves at Their Invariant Intersection...........cccevvvveivinieinicennne, 15
4.4. Congruent and Incongruent Crystallization End Points ..o 17
4.5. Melting Points of Ternary Compounds ... et st 19
4.6. Invariants Involving Solids Only . 19
5. CRYSTALLIZATION PROCESS WITH PURE SOLIDS e 20
6. CYRSTALLIZATION PROCESS WITH CONTINUOUS BINARY SOLID SOLUTION ..o, 25
6.1, Fractionation ProCess ..ottt oot e e st ean s ee st a e naeaees 26
6.2. Equilibrium Process ... e ettt e ar e 26
7. CRYSTALLIZATION PROCESS WITH SOLID SOLUTIONS AND SEVERAL INVARIANTS .............. 29
7.1, The Phase Diagram ... ettt e et e st eee st e n e enee 29
7.2. Equilibrium Crystallization Process ... 30
7.3. Process of Crystallization with Perfect Fractionation............ccoooiiiiiiiiiiiiiii e 32
7.4. Ternary Solid Selution in Compound D[ i 33
10.
1.
12.
13.
4.
15.
Vi
PART II. THE ACTUAL DIAGRAMS
SYSTEM X—U—V: LiF=UF ;=BeF , i s 37
SYSTEM Y--U~V: NaF=UF ,=BeF , . s 40
SYSTEM Y—U—R: NaF—UF j=RbF .. 44
SYSTEM Y—Z—R: NaF=ZrF [=RBF s 47
11.1. The System According to Figure 11.3 and Neglecting Solid Solution........cccccoieiiiiinicriiennnn, 47
11.2. Consideration of Solid Solution Formation .........cooieiiii e 49
11.3. The Region for Compounds G and H of System R—Z ... 49
The Region As Shown in Figures 11.6 and 11.7 e, 49
The Region As Shown in Figures 11.8 and 11.9 . 51
11.4. The Region Involving Compounds B and D of System Y—Z ..., 52
SYSTEM Y—Z—X: NaF—ZrF ;= LiF 55
12,7, Subsystem Yo AmGoX e o e e et e 56
12.2. SUBSYSEEM EmZmH oottt e et et et e e s 58
12.3. SUbsystem A—E—H—G ...ttt e s 59
12.4. Subsolidus Decompositions of Compounds G and 7 ......coooviiiiiiii i 60
Decomposition of Compound ... ..ottt ettt sa e a e 60
Decomposition of Compound G ... ettt 61
SYSTEM Y—U—X: NaF—UF [—LiF s 64
13.1. The Invariants P ,, P, P, AN P g 64
The Invariant Py oo s 64
The Invariant P o o 65
The Invariant P o s e 66
The Invariant P oo e 66
13.2. The Region DUH ..ot e e et st et e ene e aaa e, 68
13.3. The Region YD HX i ettt e s ae e 71
13.4. Fractionation Process on the Solid Solution Fields ... 73
SYSTEM Y—U=Z: NaF—UF [=ZrF | s 75
TA. 1. General CRaracteriStics .ooiiiiiiiiriiiiieeiee oottt et et e e st em e e 2eae et e eseeseen s s emteamse e aesan e e s eensees 75
14.2. Subsystem Y—A-G ....... ettt N ehteereeht s e e et et et ereehea e et et £ttt £ehe et e eh et nen e e e ene e 75
14.3. Subsystem A-—D—K—G ... s s e e 79
The Region Involving A, B, C, and D oo e e s 80
The Region Involving G, H, I, and K . ...ocoiiiiiiiii et e 87
Fractionation Processes in the Subsystem A—D—K—G .. ..o 89
Subsolidus Reactions Involving Compounds A, H, and ] ..ot e e 90
T4.4, Subsystem D—U—Z—K ...t e b e 21
Equilibrium Crystallization Along Curves ..o e 91
Fractionation Processes in the Subsystem DU—Z—K .......ccoooiiiiiriiiieiiie et 94
Equilibrium Crystallization inthe U_Field ... 95
Subsolidus Compounds F and F ...ttt et e %6
SYSTEM Y—W—Z: NaF—ThF —ZrF 97
1.1,
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.
1.10.
1.11.
1.12.
1.13.
1.14.
2.1
2.2.
2.3.
2.4.
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.
LIST OF FIGURES
Pure components as solids.......ccccoooivioii i
Retrograde solubility curve ..oooievviiiiiiii
Binary compounds .........coocoiiiiiii e,
“Inverse’’ fusion of binary compound ...
........................................................................
Singular point between congruence and incongruence of melting ..o
Continuous solid solution without MAXimMUM OF MIMIMUT oottt reereeeree e veesereaesasnnneeeees
Continuous solid solution with minimum ....................
Discontinuous solid solution, eutectic case ..............
Discontinuous solid solution, peritectic case............
Elevation of transition temperature, involving liquid
Elevation of transition temperature, subsolidus ........
........................................................................
........................................................................
........................................................................
........................................................................
........................................................................
Depression of transition temperature, involving liquid ..o
Depression of transition temperature, subsolidus......
........................................................................
Depression of transition temperature, lower fOrm pure ..........ccovioiiiiiiiieieet e s
Liquidus surface for pure solid A ...,
........................................................................
Fractionation path on surface for liquid in equilibrium with A—B solid solution .....ccoccovvninnn
Relation between equilibrium path and fractionation
Relation between equilibrium path and fractionation
paths: for ternary solid solution..............
paths: for binary solid solution ...............
Change from even to odd reaction: two solid solutions ...
Change from odd to even reaction: two solid solutions ...
Change from odd to even reaction: two pure solids ..
Temperature maximum in reaction L — calories —> §, + S, e,
Temperature minimum in reaction L + §, ~ calories —> S, i
Three-phase triangle on curve for L. — calories —> S, + S,
Type A invariant ...
Type B invariant ...
Arrangement of curves at a eutectic ...
Arrangement of curves for case (a) and case () ........
Arrangement of curves for case (c) and case (d) ........
Impossible angles of intersection ...,
Eutectic triangle contains only the eutectic “‘point”’
........................................................................
........................................................................
........................................................................
........................................................................
........................................................................
........................................................................
E
..................................................................
Eutectic triangle also contains several peritectic “points” ...,
Invariant, €ase (@) oo
Invariant, €ase (@) ..o
Invariant, case (€) oot
Invariant, case (b)) oo e
Semicongruent melting point of ternary compound M,
........................................................................
........................................................................
........................................................................
........................................................................
........................................................................
oo o O OO OO0 LWLWW
— —
O O 0
— ot ek et od
AR MR AN ed el =
— il e ] e et el et weed med v e e
OO0 N0 N N N N O O8O OO
vii
5.1
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.
6.1.
6.2.
6.3.
6.4.
6.5.
7.1,
7.2
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.
7.10.
7.1,
7.12.
7.13.
7.14.
8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
viii
Two three-solid arrangements for two binary compounds ... 20
Necessary arrangement of curves and invariants for the two cases in Fig. 5.1 ..o 20
Hypothetical ternary system with three binary compounds ... 21
The section A—D, of Fig. 5.3 .o 21
Isotherm between py aNd 7 ..o 2]
[sotherm between 7 QN 72 ..o e bbb bbbt e 23
Isotherm above P, and still above Eq and E, i 24
[SOEREIM Gt Py o e s s s s s s e et 24
The SeCtion D =Dy it b s s 24
The SECHon D gD 5 (oo e 24
The SeCtion C—D 5 .o e e 24
The SECHON D 1=B oot 24
Ternary system with continuous A—B solid solution and pure C ........occiviviinnniicicnce, 25
The binary system A—B of Fig. 6.1 .o e 25
Arbitrary section, from C to the AB side ... 25
Fractionation paths for the solid solution sUFFACE .. .o 26
Equilibrium paths and inflection point of fractionation path. ..., 28
Ternary system with discontinuous A—B solid solution and two binary compounds .................... 29
Binary system A—B of Fig. 7.1 .o 29
The invariant reaction planes of Fig. 7.1 e e 30
The SECHON D y=8 o 30
IS Otherm GBOVE [ . oot e e 31
[sotherm just Below P e e 31
Isotherm below m but above P and above F4 s 31
The SECHION D =D o oot 32
The SECHON D =B oot e - 32
The SEction A—D 5 .o 32
Portion of Fig. 7.3, with some ternary solid solution ot Dy ..., 33
Isotherm for Fig. 7.11, between p and P .o e 33
|sotherm [UST GDOVE P 1 oo s 33
Part of the section D =D, for Fig. 7. 1T e, 33
System X—U: LiF=UF ;o 37
System U=V UF =BeF , oo 37
System X—V: LiF=BeF , i i, 37
System X—U—=V: LiF=UF =BeF 38
Isotherm involving the fnvariant P, .. s 39
Isotherm above P, and Py o 39
The section C=V: LiF4UF ,=BeF . 39
The section B—V: 7LiF.OUF ,—BeF ., 39
8.9.
8.10.
9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.
9.9.
10.7.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.
10.8.
10.9.
10.10.
11.1.
11.2.
11.3.
11.4.
11.5.
11.6.
11.7.
11.8.
11.9.
11.10.
12.1.
12.2.
12.3.
12.4.
12.5.
12.6.
12.7.
The section B—-D: 7Li|:-6UF.4—2LiF-BeF2
The section A=D: 4LiF-UF4—2LiF-BeF2
........................................................................................
..........................................................................................
System Y—U: NaF —UF |
System Y—-V: NaF—=BeF , .. i
System Y—U—V: NaF=UF =BeF , .o,
Isotherms involving compounds E and F (NaF.2UF, and NaF-4UF )
The section F—V: NaF.4UF ,~BeF,
The section E—V: NaF.2UF ,-BeF,
The section D—=V: 7NaF.6UF ,=BeF , e,
The section B—H: 2NaF.UF =2NaF.BeF , ...,
The section D—H: 7NaF.6UF ,~2NaF.BeF,
............................................
................................................................................................
..................................................................................................
......................................................................................
System R—U: RbF-UF,
System Y—R: NaF=RbF .
System Y—U—R: NaF=UF ,=RbF .
The section D—N: 7NaF.6UF ,—RbF.6UF,
The section D—M: 7NaF.6UF (=RbF.3UF | o
The section D—K: 7NaF.6UF ,=2RbF.3UF,
The section D—I: 7NaF.6UF ,-7RbF.6UF
The section B—H: 2NaF.UF ,~2RbF.UF
The section Y—0Q: NaF—NaF-RbF-UF ;.
The section O-G: NoF-RbF-UF4—3RbF-UF4
........................................................................................................................
........................................................................................
......................................................................................
........................................................................................
..........................................................................................
....................................................................................
System Y—Z: NaF-ZrF
System R—Z: RBF=ZrF |
System Y—Z—R: NaF—ZrF ,~RbF s
The partial section M,—Z: NoF-RbF-ZrF4-ZrF4 ............................................................................
Divisions of Fig. 1.3 i et e s
Detail of binary system Z—R: ZrF ,=RbF ..o
Region involving compounds H and G: 5NaF.2ZrF, and 3NaF-ZrF ,
Detail of system Z—R, for f1 (5NaF.2ZrF ;) assumed pure ...,
Region involving H and G, for H pure: 5NaF.2ZrF , (pure} and 3NaF-ZrF .o
Region involving solid solutions in Y—7 (NaF=ZrF ;) system ...
......................................................................................................................
System X—Z: LiF-ZrF,
System Y=X: NaF =LiF e
System Y—Z—X: NaF—ZrF wLiF
Region below section A—G (3NcF-ZrF4-—3LiF-ZrF4)
The section A—G (BNGF-ZrF4—3LiF-ZrF4) ........................................................................................
Region above section E~H (7NaF-62rF4—2LiF-ZrF4)
The section F—I (3NcF-4ZrF4—3LiF-4ZrF4)
........................................................................................................................
......................................................................
....................................................................
....................................................................................
50
12.8.
12.9.
12.10.
12.11.
12.12.
13.1.
13.2.
13.3.
i3.4.
13.5.
13.6.
13.7.
13.8.
13.9.
13.10.
13.11.
14.1.
14.2.
14.3.
14.4.
14.5.
14.6.
14.7.
14.8.
14.9.
14.10.
14.11.
14.12.
14.13.
14.14.
14.15.
14.16.
14.17.
14.18.
14.19.
Middle region of system Y—Z~X: NaF=ZrF =LiF ..o, e et
Decomposition of compound 1 {SLiF4ZrF ) i,
The section F—I (3NaF-4ZrF4—-3LiF-4ZrF4) ....................................................................................
Decomposition of compound G (BLIF-ZrF,) .o
The section A-G (3NoF-ZrF4-3LiF-ZrF4) ........................................................................................
System X—Us LiF=UF ;o
System Y—U—X: NaF—UF —LiF s
The section D—H (7N0F-6UF4-7LiF-6UF4) ......................................................................................
Decomposition of compound C (SNaF-3UF ) ..
Decomposition of compound G (4LiF-UF4) ........................................................................................
Formation of compound E (NaF-2UF |} ..,
Region above section D—H (7NaF.6UF ,=7LiF.6UF ) oo,
The section E—H (NcF-ZUF4—7LiF-6UF4) ........................................................................................
Region below section D—H (7N0F-6UF4—7LiF-6UF4) ......................................................................
The section B—G (QNGF-UF4—4LiF-UF4) ..........................................................................................
Detail of Fig. 13.2, near compound C (5NaF 3UF ) ..o
System Y—7Z: NaF=ZrF ;s
System U—Z: UF [=ZrF ;o
System Y—U—Z: NaF=UF =ZrF /., et ettt e et naees
The section A—G (B_NGF-UF4—3NGF-ZI‘F4) ........................................................................................
The section D—K (7N0F-6UF4—7N0F-6ZrF4) ....................................................................................
The section between Y {(NaF) and the point on UZ that represents the
composition TUF = 1ZrF | i,
Subsystem Y~A—G: NaF=3NaF.UF ,—=3NaF.ZrF , .o
Subsystem Y—A—G (NaF-3NaF.UF ,~3NaF.Z¢F ,): fractionation paths ...,
Subsystem A—D—K—G: system NaF-UF ,~ZrF , region between 3:1 and 7:6
SOLIA SO UTIONS .o ettt et et b e e et
Scheme | for compound C (5NoF-3UF4) ..............................................................................................
Sequence of isotherms for Scheme | ...
The section between C (5N0F-3UF4) and the point on YZ that represents the
composition SNaF-3ZrF ,, in Scheme | ...
Scheme Il for compound C (5NoF-3UF4) ..............................................................................................
Sequence of isotherms for Scheme 1l ...
The section between C (SNGF-SUFA) and the point on YZ that represents the
composition SNaF=3ZrF ,, in Scheme Il ...
Lower part of subsystem A—D—K~G: the NaF-ZrF, side of Fig. 14.9 ..
Solids left after complete solidification, in region YDK
(Na F—7N0F-6UF4—7NGF-6ZrF4) ......................................................................................................
Decomposition of compound A (3NoF-UF4) ........................................................................................
Transition in compound {/ (SNQF-ZZer) ............................................................................................
14.20.
14.21.
14.22.
14.23.
14.24.
15.1.
15.2.
15.3.
15.4.
15.5.
15.6.
15.7.
15.8.
Appearance of compound ] (BNOF-QZer) .......................................................................................... 93
Subsystem D—U~Z—K: system NaF-UF ,-ZrF, between the 7:6 solid solution
and the UF ,~ZrF, solid solution...........ccccoiiiiiiiiiis e, 93
Subsystem D—U—7—K: temperature CONTOUIS .. ..ooiociiiiieiieeieieesieeieiteee oo 93
Subsystem D—U—Z—K: fractionation paths ... 94
Appearance of compounds £ and F (NaF.2UF, and NaF-4UF ) 96
System Y=W: NaF—ThF e e 97
System W2t ThF = ZrF ;oo 97
System Y—W—Z: NaF—ThF —ZrF ;.. 98
System Y—W—Z7: NcF—ThF4—ZrF4 (revised) ..o, e e e, 99
Middle region of system Y—W—7Z (NaF=ThF ,=ZrF ;) ..o, 100
Subsolidus transition in compound B (5NoF-2ZrF4) .......................................................................... 101
W—Z7 region of system Y—W--Z (ThF ,~ZrF, region of system NaF~ThF ~Z¢F,) ... .. 102
Fractionation paths for the solid solution surface of system Y—W—-Z
(NGF=ThE j=ZrF ) oo s e 103
xi
PART |
GENERAL PRINCIPLES
1. BINARY DIAGRAMS
1.1 PURE COMPONENTS AS SOLID PHASES
With the pure components as the only solid
phases in a binary system (Fig. 1.1), the melting
points (T, and T}) are lowered and the system is
always eutectic in type. In Fig. 1.1 the eutectic
e involves the high-temperature form of A (A,)
and the low-temperature form of B (Bfi); at the
temperature of e the phase reaction is:
L(e) —calories === A_+ Bg
If T:1 is the transition temperature for the forms
of A, then the two-solid mixture consists, at
equilibrium, of A and B
Afi and B, below T7. 1f T is the transition
temperature for the polymorphic forms of B, there
will be a break in the freezing-point curve (or
solubility curve) of the B solid at the temperature
T, unaffected by the A if both forms of the B
solid are pure. Above TJ, the liquid is in
equilibrium with B , below Tj with B If the
transition B,~» B
above T{; and of
fails to occur on cooling, a
metastable eutectic e(m) is possible, for liquid in
(metastable) equilibrium with A_and B .
(It is possible for a solubility curve to show a
‘“‘:etrograde’’ temperature effect, even down to the
eutectic, in which case we would have Fig. 1.2.
Retrograde changes of solubility with temperature
were not encountered in the present systems,
whether binary or ternary, but reference will be
made to this question later.)
Liquids A and e,
such as point @ (Fig. 1.1), give A as primary
crystallization product when cooled to the curve
with composition between
T,e. At the temperature T the equilibrium
mixture consists of solid A and liquid 7 in the
ratio (by weight or by moles, depending on the
units of the diagram) x//xs. When the temperature
of e (eutectic) is reached, the remaining liquid
freezes invariantly to a secondary crystallization
product of a mixture of A_and B, crystals in the
proportion ev/eu. For liquids between b and B in
composition the primary solid will be B , changing
to By at Tp, and followed by the eutectic mixture
at e.
In a two-phase region such as T ,ue, the
coexisting equilibrium phases are joined by
horizontal tie lines (also called conjugation lines,
conodes, joins) running in this case between the
liquidus curve T,e ond the solidus curve T,u.
A
With pure solid A, the solidus is here a vertical
fine, the edge of the diagram. The horizontal line
uev is also sometimes considered part of the
solidus of the diagram.
1.2. PURE COMPOUNDS
Figure 1.3 shows three
(C; D, E) in the system A-B:
1. Compound C melts congruently at C_; it has
a congruent melting point.
binary compounds
It is stable as a solid
phase until it melts to a liquid of its own chemical
(analytical) composition. Points e, and e, are
eutectics for solids A and C_and for C_ and D,
respectively.
At TZ, the higher-temperature form
C_ undergoes transition
. to Cpe At To, Cg
decomposes on cooling into the solids A and D.
2. Compound D melts at the
temperature D.. |t decomposes as a solid phase
incongruently
UNCLASSIFIED
ORNL~LR-DWG 24748
T — AD+E . E+E
/H—CB C£+D
76'\ - ]
A+ D |
A C D £ B
Fig.1.3.
(into liquid p and solid B) before reaching its
own melting point [the metastable or submerged
congruent melting point D _{m)]. In contrast to a
eutectic point (e,, e,), the point p is called a
peritectic point (also meritectic, sometimes) and
the reaction:
D + calories = L(¢) + B
is a peritectic reaction.
3. Compound E decomposes as a solid phase,
into D and B, at the temperature T, before it
reaches any equilibrium with liquid. Such a solid
phase is sometimes called '*subsoclidus.”
Figure 1.3 shows a metastable eutectic, e(m),
between solids A and D, possible if compound C
fails to form on e’ (m)
metastable eutectic for solids C_and B.
It is also possible for ¢ compound to undergo
cooling; is a similar
incongruent melting on cooling (inverse peritectic,
or inverse fusion), as shown in Fig. 1.4. No
example is found in the actual binary systems
studied, but the relation will be referred to under
the ternary systems. In Fig. 1.4, T] ts the usual
incongruent melting point of C; T, is its inverse
fusion point:
C —calories=—=L({(p )+ B .
Relation Between Congruence and Incongruence of
Melting for a Binary Compound
The flatness of the freezing-point curve of a
compound at the maximum, whether exposed and
stable as at C_ in Fig. 1.3 or submerged and
metastable as at D_(m), depends on the degree of
dissociation of the compound in the liquid state.
If the compound C is not dissociated at all, the
maximum is a pointed intersection of two unrelated
curves: on one side the freezing-point curve of
the compound in the binary system A—-C, on the
other side the freezing-point curve of the compound
in the unrelated binary system C—B. OCnly when
the maximum is such a sharp intersection may the
whole diagram be said, strictly, to consist of two
adjacent binary systems. If there is any dis-
sociation of C into A and B in the liquid state,
the curve is rounded, and its maximum is lowered,
because the liquid, even at the maximum itself, is
not pure C (in the molecular sense) but C plus
A and B. The greater the degree of dissociation,
the flatter and lower is the maximum. Hence,
whether the melting point of the compound will be
exposed or submerged relative to the freezing-
point curves of adjacent solid phases depends
on the ‘‘true’’ melting point of the compound
without decomposition and on its degree of dis-
sociation in the melt.
In a comparison of corresponding compounds of
given formula, such as A.B in a series of
homologous binary systems with A fixed and B
varied, the congruence or incongruence of the
melting point of the compound will be a function
of three variables: the melting point of the second
component (B, B’ B", ...), the *‘true’’ melting
point of the compound (A:B, AB’, etc.), and the
degree of dissociation of the compound in the melt.
For a given specific binary system, moreover,
the relation may vary with the pressure, because of
several effects. Pressure causes some change in
the relative melting points of all three solids of
the system (A, C, B); it causes corresponding
changes in the compositions of the intervening
isothermally invariant liquid solutions (e, p, etc.);
and it causes changes in the dissociation of the
compound. The melting point of the compound
may therefore be exposed (congruent) at one
pressure and submerged (incongruent) at a different
pressure. At some particular or singular value of
the pressure, therefore, the diagram would pass
through the configuration in Fig. 1.5, When a
system at arbitrary pressure seems to give such
a diagram, however, it is reasonable to suppose
that the maximum is actually either just exposed
or just submerged.
1.3. SOLID SOLUTION
Continuous Solid Solution
In a binary system with continuous solid
solution, the usual relation is either an ascending
one as in Fig. 1.6, without minimum or maximum,
or, as in Fig. 1.7, one with a minimum. Continuous
solid solution with a maximum is very rare. The
space L + S between the liquidus and solidus
curves represents, at equilibrium, two-phase
mixtures, the L and § compositions being joined
by a horizontal tie line at any temperature. In
Fig. 1.6 L and S have the same composition only
In Fig. 1.7 the L and §
curves touch at the minimum; they touch tan-
gentially, however, and the two parts of the
diagram are not strictly like two binary systems
side by side.
Except for the pure components or for the
composition m, a given composition has a definite
for the pure components.
temperature range of freezing or melting, for
UNCLASSIFIED
ORNL-LR-DWG 24749
é
5 L
'.—
<