-
Notifications
You must be signed in to change notification settings - Fork 10
/
ORNL-2548.txt
9216 lines (6693 loc) · 165 KB
/
ORNL-2548.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
DISCLAIMER
This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.
DISCLAIMER
Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.
ORNL-2548
Chemistry ~ General
TID-4500 (15th ed.)
Contract No. W-7405-eng-26
REACTOR CHEMISTRY DIVISION
PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS
R. E. Thoma, Editor
DATE ISSUED
QOAK RIDGE NATIONAL LABORATORY
Qak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION
INTRODUCTION
1.
2. METAL-FUSED-SALT SYSTEMS
3.
.1
LT
1.2.
1.3.
1.4.
2.1
2.2.
2.3.
2.4.
2.5.
FUSED-SALT SYSTEMS
The System LiF~NaF...............
The System LiF-KF.................
The System LiF-RbF...............
The System LiF-CsF...............
The System NaF-KF ...............
The System NaF-RbF .............
The System KF=RbF ...............
The System LiF—-NaF-KF.......
The System LiF-NaF~RbF.....
The System LiF~KF-RbF.......
The System NaF-KF~RbF .....
The System NaBF ,—KBF,.......
The System NaF—FeF, .........
The System NaF-NiF,.............
The System RbF-CaF, ..........
The System LiF~NaF -CaF, ...
3.1
3.2,
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9
3.10.
3.1
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.2
3.22.
3.23.
3.24.
3.25.
3.26.
3.27.
3.28.
3.29.
3.30.
3.31.
3.32.
3.33.
The System Silver—Zirconium.
The System Indium=Zirconium
---------------------------------
CONTENTS
..................................................................................................................................
METAL SYSTEMS
.........................................................................................
-----------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------
The System Antimony—ZirCONIUM ..o iieiiirriinecr ittt et et e
The System Lead=Zirconium...
-------
-----------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------
The Sodium Metal~Sodium Halide Systems ...ccoeieviiiiiiceccc e
The Potassium Metal—Potassium Halide Systems ...
The Rubidium Metal-~Rubidium Halide Systems .....ccooveereiiinicieieceec
The Cesium Metal~Cesium Halide Systems .....cocvirociciciiiiciecs e,
The Alkali Metal~Alkali Metal Fluoride Systems ......cccccoovevvieeicei it
The System NaF -MgF,—CaF,
The System NaF-KF-AIF,....
The System LiF~BeF,............
The System NaF-BeF, ..........
The System KF-BeF, ............
The System RbF-BeF, ..........
The System CsF-BeF, ..........
The System LiF-NaF-BeF,...
The System LiF~RbF-BeF,...
The System NaF —KF ~BeF, ...
The System NaF-RbF -BeF , .
The System NaF —-ZnF,, ..........
The System KF~ZnF, ...........
The System RbF—ZnF, ...........
The System LiF~YF ...,
The System LiF~ZrF , ............
The System NaF-ZrF ,.............
.......................
.........................................................................................
-----------------------------------------------------------------------------------------
.........................................................................................
-----------------------------------------------------------------------------------------
.........................................................................................
.........................................................................................
-----------------------------------------------------------------------------------------
.........................................................................................
-----------------------------------------------------------------------------------------
.........................................................................................
.........................................................................................
.........................................................................................
-----------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------
........................................................................................
.........................................................................................
.........................................................................................
-----------------------------------------------------------------------------------------
.........................................................................................
.........................................................................................
-----------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------
.........................................................................................
.........................................................................................
.........................................................................................
.........................................................................................
-----------------------------------------------------------------------------------------
.........................................................................................
-----------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------
.........................................................................................
ves
il
3.34.
3.35.
3.36.
3.37.
3.38.
3.39.
3.40.
3.41.
3.42.
3.43.
3.44.
3.45.
3.46.
3.47.
3.48.
3.49.
3.50.
3.51.
3.52.
3.53.
3.54,
3.55.
3.56.
3.57.
3.58.
3.59.
3.60.
3.61.
3.62.
3.63.
3.64.
3.65.
3.66.
3.67.
3.68.
3.69.
3.70.
3.71.
3.72.
3.73.
3.74.
3.75.
3.76.
3.77.
3.78.
3.79.
3.80.
3.81.
3.82.
3.83.
3.84.
The System KF—-ZrF‘4 ........................................................................................................ 56
The System RBF —ZrF oo, 57
The System CsF—ZrF4 ...................................................................................................... 58
The System LiF---NcF--ZrF:4 ............................................................................................ 60
The System NCJF—KF—ZI'F4 .............................................................................................. 62
The System NaF—RbF—ZrF ..o, 64
The System NaF-CrF,~ZrF ,: The Section NaF.CrF, ~ ZrF , oo, 66
The System NaF—CeF ; —ZrF .o, 67
The System LiF—CeF .t 68
The System NaF —HF .o 70
The System LiF —ThF ;o 72
The System NaF —ThF oot 73
The System KF =ThF , o, 74
The System RBF —ThF ;oo 76
The System BeF ,—ThF , oo 77
The System BeF S UF 4 o 78
The System Mgl:2-Th|:4 .................................................................................................. 79
The System LiF—BeF2--ThF4 .......................................................................................... 80
The System NoF—ZrFA—Th B e e 82
The System LiF-—UF3 ........................................................................................................ 84
The System LiF —UF oo 85
The System NcF-—UF3 ...................................................................................................... 86
The System NaF—UF ; ..o 88
The System KF —UF ;i s 90
The System RBF —UF ;oo s o1
The System CsF—UF ;oo e 92
The System ZrF =UF .ot s 93
The System San-—UF4 ...................................................................................................... 94
The System PbF ,—UF ;oo s 95
The System Th F4—UF4 ...................................................................................................... 96
The System LiF—NaF—UF4 .............................................................................................. 98
The System LiF —KF—UF 4 s 101
The System LiF—RBF—UF , oo s 102
The System NaF —KF —UF .o 103
The System NGF —RbF —UF oo 104
The System LiF~BeF , —UF , o e 108
The System NaF —BeF , —UF ;oo s 110
The System NaF —PbF ,—UF .o e 113
The System KF—PbF ) —UF , ..o 114
The System NaF —ZrF (—UF ;oo e 116
The System LiF—ThF , —UF /(oo 119
The System NaF-ThF,-UF,: The Section 2NaF.ThF ,~2NaF.UF, ...ccccooeccicen. 124
The System LiF—PuF s 125
The System LiCI—FeCl, i, 126
The System KCI=FeCl, ... 127
The System NaCl=ZrCl, .o e 128
The System KCI=ZrCl ..o e 130
The System LiCl-UCH s 131
The System LiCI-UCH oo, 132
The System NaCl-UCH; e, 133
The System NaCl—UCI ;.o e, 134
4.
5.
3.85.
3.86.
3.87.
3.88.
OXIDE AND HYDROXIDE SYSTEMS
4.1.
4.2.
4.3.
4.4,
4.5.
4.6.
AQUEOQUS SYSTEMS
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9
5.10.
The System KCI—UCl4 ......................................................................................................
The System RbC|—UC|3 ....................................................................................................
The System CsCl-UCH, .o,
The System KaCrF =Nag CrF L CrF i,
..........................................................................................
The System SiOz---ThO2 ....................................................................................................
The System LiOH-NGOH ....ooooeeee ettt et ea e enes
The System LiOH—KOH ettt e st e e s sete e e sabsas b e s bs e abteeeensanes
The System NAOH <K OH ...ccocvviiiiiceii ittt sbeeres s e svtesermeesnsssntssaes
The System NAOH<—RDOH .....coooiiiiereeireeereres s e e nv e s eares e sssessae s sresnsssassresneas
The System BCJ(OH)2—-Sr(OH)2 ..........................................................................................
----------------------------------------------------------------------------------------------------------------------
The System U02-P205-—H20, 25°C Isotherm ... vt
The System UO3-H3P04—H20, 25°C 150therm ..coccveiiviieciee e et
The System U(HPO4)2-C1207-—H2O, 25°C Isotherm......ccoiiiriiiiiicec e
The System U0, -Na,0~C0,—H,0, 26°C Isotherm ..ot
Portions of the System ThO,~Na,0-C0,~H,0, 25°C Isotherm.......c.cooerniiniininnnnn.
The System Na,0-CO,-H,0, 25°C Isotherm ...
Solubility of Urany!l Sulfate in Water ..o,
Two-Liquid-Phase Region of UO,S0, in Ordinary and Heavy Water ...
The System UQ3~-SO3 —-H20 ..............................................................................................
Coexistence Curves for Two Liquid Phases in the System
U0,50,,—H,S0, ~H, 0 cvrervrererrsseesmsessssossee s ssssesssssesssssss oo
11. Two-Liquid-lghasde Rezgion of the System U02504—H2504-—H20 ................................
. Two-Liquid-Phase Coexistence Curves for U03—Rich Solutions in
the System UO,-30,~H,0 With and Without HNO ..o
13. Solubility of UO3 in H2504-—H20 MiXEUFES oieii e iieeereccrie s eerereece e erenesentnesatnae sensaaeans
14. Effect of Excess H,SO, on the Phase Equilibria in Very Dilute
i
> o
5.17.
5.18.
5.19.
5.20.
5.21.
5.22.
5.23.
5.24.
5.25.
5.26.
5.27.
5.28.
5.29.
5.30.
UO,50, Solutions ...
Second-Liquid-Phase Temperatures of U02504—Li2504 Solutions .cccocveieeireie.
Second-Liquid-Phase Temperatures for U02504 Solutions Containing
Li2504 or BeSO, i s
Second-Liquid-Phase Temperatures for BeSO4 Solutions Containing UO, v
The Sy stem Ni504-—U02$04~—H20 A 25PC et e et
Phase-Transition Temperatures in Solutions Containing CUSOA,
UO,30,, and HoSO 4o s
The Effect of CuSO, and NiSO, on Phase-Transition Temperatures:
0.04 m UO0,50,; 0.01 m HySO, oot
The System U0, ~Cu0-NiO~50,-D,0 at 300°C; 0.06 m SO; .coovvcvrivrmniiiiciriinnee,
Solubility of Nd,(SO,); in 0.02 m UO,S0, Solution Containing 0.005 m
H,S0, (T80 =300PC) .. eeieeeierreeeeeterereeeeerete et et se st s ere e e e s st bsatsasbasesbes satbesaeeseeensbs e enessaenses
Solubility of Lo2(504)3 in UO,S0, Solutions ...
Solubility of CdSO, in UO,50, Solutions ...,
Solubility of Cs S0, in UO,50, SOlUTIONS it e
Solubility of Y2(2504)3 in UD,S0, Solutions ...
Solubility of A92504 in UO,50, SOlUTIONS i e
Solubility at 250°C of BaSO, in U0,S0,~H,0 Solutions ...
Solubility of H2WO4 in0.126 and 1.26 M U02504 ........................................................
Phase Stability of HWO, in 1.26 M UO,F, o,
Vi
5.31.
5.32.
5.33.
5.34.
5.35.
5.36.
5.37.
5.38.
5.39.
5.40.
5.41.
5.42.
The System UO,(NO,),=H,Oueererieiiiii e
Phase Equilibria of Uéa and HF in Stoichiometric Concentrations
(AQUEOUS SYSTOM) .. ittt ettt e et rere b er e e erssrasesecbenssnessrnsbeessnessanenn
Solubility of Uranium Trioxide in Orthophosphoric Acid Solutions ....coccvveevvinccnnnnnn.
Solubility of Uranium Trioxide in Phosphoric Acid at 250°C ........cccoviveevvieniienrens
Solubility of UQ, in H3PO, Solution ..
The System UO,CrO, —H,0 .o
Variation of Li,CO, Solubility with UO,CO, Concentration at Constant
CO, Pressure (250°C) oottt ittt sttt e e e e es s
The &ystem Li,0-UO, ~CO,—H,0 at 250°C and 1500 pi.....vrerrerermerocrine
The System ThINO, )y ZH 0 oo
Hydrolytic Stability of Thorium Nitrate—Nitric Acid and Uranyl
NItrate SOlUTIONS ¢ e e sbs e b e s ses e b e banenenens
The System ThO,~CrO;—H, 0 at 25°C ..o,
Phase Stability of ThO,-H,P0,-H,0 Solutions at High Concentrations
OF ThO ettt st et e e bbb s
PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS
INTRODUCTION
This compilation presents the phase diagrams for possible materials for nuclear reactors
developed at the Oak Ridge National Laboratory over the period 1950-59. It represents the
efforts of certain personnel in what are now the Chemical Technology, Metallurgy, Chemistry, and
Reactor Chemistry Divisions of ORNL. This document also contains diagrams originated by
other installations under contract to ORNL during that interval. In addition, a few diagrams from
the unclassified literature have been included when they form part of completed systems
sequences,
No general discussion of the principles of heterogeneous phase equilibrium has been
included since excellent discussions are available in many well-known publications. Equilibria
in several of the fused-salt systems presented below have been described in some detail in a
1
recent publication by Ricci.’ Nor has any attempt been made to assemble the phase equilibrium
data on reactor materials available from many other sources. For such information the reader is
2=6
referred to other recently published compilations of phase diagrams and to the several new
works dealing specifically with nuclear reactor materials.” =7
While some of the diagrams presented below are the result of fundamental researches, most
were obtained in support of the ORNL programs in development of fluid-fueled reactors. Others
have been developed as a consequence of ORNL interests in reprocessing of nuclear fuels,
reactor metallurgy, production of uranium and thorium from raw materials, and studies of
mechanisms of corrosion.
Much of the research effort was devoted to searches for systems of direct use as fluid fuels
or blanket materials; unpromising systems were often given only casual attention. The diagrams
in this collection, accordingly, vary widely in the degree of completeness of examination. A
brief description of the status of the work is presented in each case; in o few cases, where no
detailed description of the system has been published, the available data have been included
with the diagram.
]J, E. Ricci, Guide to the Phase Diagrams of the Fluoride Systems, ORNL-2396 (Nov. 19, 1958),
2). F. Hogerton and R. C. Grass (eds.), The Reactor Handbook, vol 2, AECD-3646 (May 1955).
371, Lyman (ed.), Metals Handbook, American Society for Metals, Cleveland, Ohio, 1948.
4F, A. Rough and A, A, Bauer (eds.), Constitution of Urantum and Thorium Alloys, BMI-1300 (June 2,
1958).
SE. M. Levin, H. F. McMurdie, and F, P. Hall, Phase Diagrams for Ceramists, The American Ceramic
Society, Columbus, Ohio, 1956.
6E. M. Levin, H. F. McMurdte, and F. P, Hall, Supplement to Phase Diagrams for Ceramists, The
American Ceramic Society, Columbus, Ohio, 1959,
’B. Yates, Materials for Use in Nuclear Reactors, Information Bibliography, IGRL-1B/R-15 (2nd ed.),
1958,
8H. H. Hausner and S. B. Roboff, Materials for Nuclear Power Reactors, Reinhold Publishing Corp.,
New York, 1955,
9B. Kopelman (ed.), Materials for Nuclear Reactors, McGraw-Hill Book Co., New York, 1959.
1. METAL SYSTEMS
1.1. The System Silver=Zirconium
J. O. Betterton, Jr., and D. S. Easton, ‘“‘The Silver—Zirconium System,'’ Trans. Met. Soc.
AIME 212, 47075 (1958).
A detailed investigation was made of the phase diagram of silver—zirconium, particularly in
the region 0 to 36 at. % Ag. The system was found to be characterized by two intermediate
phases, Zr,Ag and ZrAg, and a eutectoid reaction in which the B-zirconium solid solution de-
composes into a-zirconium and Zr,Ag. It was found that impurities in the range 0.05% from the
iodide-type zirconium were sufficient to introduce deviations from binary behavior; with partial
removal of these impurities an increase in the a-phase solid solubility limit from 0.1 to 1.1 at. %
Ag was observed.
TEMPERATURE (°C)
UNCLASSIFIED
ORNL-LR-DWG 18989
T
860 /
850 —
B+y |
S 840 |
o
Ll
@ 830
)
g . l A
Al
@ 820 4
% O at+B+y
w810 7 I 7
v 5 NulE PHASE
800 T S NGLE PHASE WITH A TRACE OF SECOND PHASE n
OAV TWO PHASE
790 { THREE PHASE _
FILLED SYMBOLS NDICATE METALLOGRAPHIC SAMPLES
280 WHICH WERE CHEMICALLY ANALYZED FOR SILVER CONTENT |
3 4 5 6
SILVER (at %)
Fig. 1.1a. The System Silver=Zirconium in the Eutectoid Region (0-6
at. % Ag)-
UNCLASSIFIED
ORNL-LR-DWG 189884
1400 {
AN
\ LIQ |
1300 | N\
N
N
| AN
y +L1Q j
1200 \‘_,_
'Y w
[ | [ | A*
d A
1100 —
y+8
1000 i i
A A
800 r T r
SN
800 f— T — — — — -
a A A
/ O SINGLE PHASE
a+y
’ ] DAV TWO PHASE
700 I, FILLED SYMBCLS INDICATE METALLOGRAPHIC SAMPLES
L WHICH WERE CHEMICALLY ANALYZED FOR SILVER CONTENT
0 5 10 15 20 25 30 35
SILVER {at %)
Fig. 1.15. The System Silver~Zirconium in the Region 0-36 at. % Ag.
1.2. The System Indium-Zirconium
J. O, Betterton, Jr., and W. K. Noyce, “‘The Equilibrium Diagram of Indium=Zirconium in the
Region 0-26 at. pct In,"”’ Trans, Met, Soc. AIME 212, 340-42 (1958),
The zirconium-rich portion of the indium—zirconium phase diagram was determined as a
study of the effect of alloying a trivalent B-subgroup element, indium, with zirconium in group
IVA, The temperature of the allotropic transition was found to rise with indium, terminating in a
peritectoid reaction, (5(9.3% In) + ¥(22.4% In) == a(10.1% In) at 1003°C. In this respect the
effect of indium is analogous to that of aluminum in zirconium and titanium alloys.
UNCLASSIFIED
ORNL-LR—DWG 18987
1300 :
|
1200 o/
100 o
Bty
1000
o Bty
w
o
P
E 900
o
Lt
0o
=
Ll
Z |
800 | -
700 B i I
/ |
600 —+ - l — —_—
¥ @
500
0 2 4 6 8 10 12 14
INDIUM (at %)
Fig. 1.2a, The System Indium—Zirconium in the Peritectoid Region {(0-13
of. % ln).
BLANK
BLANK
UNCLASSIFIED
ORNL-LR-DWG 18983
1400
1300 74
B
0 0
1200 roooO 5 O 0
B+Zr,Sb
;GHOO OOOrI’DG 0 &,
L
a
P
<
< 1000 /
o
l_
KT
900 8,
A ]
|
800 s
a+Zr25b
700
O 1 2 3 4 5 6 I 8 9
ANTIMONY {(at. %)
Fig. 1.3b, The System Antimony~Zirconium in the Peritectoid Region (0—6 at. % Sb).
1.4. The System Lead=Zirconium
G. D. Kneip, Jr., and J. O. Betterton, Jr., cited by E. T. Hayes and W. L. O'Brien,
““Zirconium Equilibrium Diagrams,”’ p 443-83 in The Metallurgy of Zirconium, ed. by B, Lustman
and F. Kerze, Jr., McGraw-Hill Book Co., New York, 1955,
UNCLASSIFIED
ORNL—LR—DWG 1375
1200
1100 o —0 0—o0 oo}
B
1000 .
o . | Bty
m
xr -
>
£ 900
@
L
a
=
L
l_
800 -
700 // o SINGLE PHASE
/ » TWO PHASE
4 THREE PHASE
&00
0 2 4 6 8 10 12
LEAD (at. %)
Fig. 1.4 The System Lead-Zirconium in the Peritectoid Region (0-12
at. % Pb)l
2, METAL-~-FUSED.SALT SYSTEMS
2.1. The Sodium Metal=Sodium Halide Systems
M. A. Bredig and J. E. Sutherland, ‘“High-Temperature Region of the Sodium~Sodium Halide
Systems,'’ Chem. Ann. Prog. Rep. June 20, 1957, ORNL-2386, p 119. Subsequent report on these
systems to be published.
UNCLASSIFIED
ORNL-LR-DWG. 21894 A
X <— MOLE FRACTION MX
98 765 4.3.2 4 9
1T 1 [
876 .54 .3.2 4
4200 HSOO‘I ‘ ‘8 T T T T T T T 4200
o COOLING CURVES, THIS WORK
. X EQUILIBRATION, MAB,JWJ WTS
‘:, A EQUILIBRATION, HRB, MB
1100 1080° — 1400
1000 — 4
: TWO LIQUIDS 000
o0 X °G
005° NaGl - Na A
900 X {900
2 X
800|— \fi%_o_c 795 800
SOLID SALT + LIQUID METAL
700 700
CsF-Cs
600 600
1100+ ONE LIQUID ONE LIQUID 144100
1026° 1033°
1000 |- ¢ —1000
°C x % X X oC
TWO LIQUIDS \ / Two LiouiDs \
900 - £ \ \- 900
% NaBr - Na . \ { \
x -
800 \ e Nal Na 800
) 740° x| [ \
[ss2] & ‘x
?00——80 caLT . \ T?OO
+ o
LID SALT + LIQUID METAL { ¢ e
I O I I | S?U[f SALT T HIAPIB MERAL ,
6
O3 456780 12 3456789 o
MOLE FRAGTION OF METAL—> MOLE FRACTION OF METAL —>
Fig. 2.1, The Sodium Metal-Sodium Halide Systems.
2,2, The Potassium Metal =Potassium Halide Systems
J. W. Johnson and M. A, Bredig, ‘‘Miscibility of Metals with Salts in the Molten State. Ill. The
Potassium—Potassium Halide Systems,’’ ]. Phys. Chem. 62, 604 (1958),
Complete miscibility of metal and salt exists in the KX=K systems, X = F, Cl, Br, and I, at
and above 904, 790, 727, and 717°C, that is, as close as +47, +18, ~7, and +22°, respectively,
to the melting points of the salts. The asymmetry of the liquid-liquid coexistence areas,
especially of the fluoride and chloride systems, as indicated by the consolute compositions
(20, 39, 44, and 50 mole % metal, respectively), is largely explained by the difference in molar
volumes of salt and metal, At the monotectic temperature, the solubility of the solid salts in the
liquid metal, as well as of the metal in the liquid salt phase, is much larger than in the case of
the sodium systems.
SIFIED
R-DWG 21481B
I I I I I I I I
g04° 0,56,® COOLING CURVES
x EQUILIBRATION AND SAMPLING __
900
850
800 —
©
| | | I | I | I | \
10 20 30 40 50 60 70 80 90
mole % K
Fig. 2.2. The Potassium Metol —Potassium Halide Systems,
10
2.3. The Rubidium Metal=Rubidium Halide Systems
M. A, Bredig and J. W. Johnson, ‘‘Rubidium~Rubidium Halide Systems,’’ Chem. Ann. Prog.
Rep. June 20, 1957, ORNL.2386, p 122; M. A. Bredig, J. E. Sutherland, and A. S. Dworkin,
““Molten Salt—-Metal Solutions. Phase Equilibria,’”" Chem. Ann. Prog. Rep. June 20, 1958,
ORNL-2584, p 73. Subsequent report on these systems to be published.
UNCLASSIFIED
ORNL-LR-DWG. 32909A
800>_ 790° l l —
\ /,—-—X-—-..x\
N, /RbF-Rb
SV . N
773° ~
~
750 — —
1 706°
700 =X WRBGI=Rb ~*~ —
OC X 696 ° X )
RbBr—-Rb \x
—_
650 y— T _
\\x 6349 . \\\\\\
Ko Y T — X
AN " RbI-Rb N\
o X
- .9 X X X X X
X 615°
600 | — \x '\ |
\
550 | |
25 50 75
MOLE % Rb METAL
Fig. 23. The Rubidium Metai—=Rubidium Halide Systems.
11
2.4, The Cesium Metal=Cesium Halide Systems
M. A, Bredig, H. R. Bronstein, and W. T. Smith, Jr., ‘‘Miscibility of Liquid Metals with
Salts. 1l. The Potassium—Potassium Fluoride and Cesium—Cesium Halide Systems,' J. Am.
Chem. Soc. 77, 1454 (1955),
Miscibility in all proportions of cesium metal with cesium halides at and above the melting
points of the pure salts, and of potassium metal with potassium fluoride 50° above the melting
point of the salt, occurs. The temperature-concentration range of coexistence of two liquid
phases decreases in going from sodium to potassium systems and disappears altogether for the
cesium systems, The solubility of the solid halides in the corresponding liquid alkali metals,
at a given temperature, increases greatly with increase of atomic number of the metal.
UNCLASSIFIED
ORNL-LR-DWG. 37011
| [ T
700 B
CsF-Cs
650 - —
CsCl-Cs
600 —
°C
CsI-Cs
550 —
500 - 1
CESIUM METAL-HALIDE SYSTEMS
450 ' ' |
0 25 50 75 100
MOLE % METAL
Fig. 2.4. The Cesium Metal -Cesium Halide Systems,
12
2.5. The Alkali Metal=Alkali Metal Flyoride Systems
M. A. Bredig, J. E. Sutherland, and A. S. Dworkin, ‘‘Molten Salt=Metal Solutions. Phase
Equilibria,”” Chem. Ann. Prog. Rep. June 20, 1958, ORNL-2584, p 73.
UNCLASSIFIED
ORNL-LR-DWG. 31067A
1300
1200
1100
1000 4 —
°C
900 T
\
|
800 4
700 ]
CsF - Cs
| | |
60Oo 25 50 75 100
MOLE % METAL
Fig. 25. The Alkali Metal-Alkali Metal Fluoride Systems,
13
3. FUSED-SALT SYSTEMS
3.1. The System LiF-NaF
A. G. Bergman and E. P. Dergunov, ‘‘Fusion Diagram of LiF-KF-NaF,"”’ Compt. rend. acad.
sci. U.R.S.S. 31, 753-54 (1941).
The system LiF-NaF contains a single eutectic at 60 LiF~40 NaF (mole %), m.p. 652°C.
UNCLASSIFIED
ORNL-LR-DWG 20457
i /"
/
1000
200 /
800
700
TEMPERATURE (°C)
652°C
600
500
LiF 10 20 30 40 5C 60 70 80 90 NaF
NaF {(mole %)
Fig. 3.1. The System LiF-NaF.
14
3.2. The System LiF=KF
A. G. Bergman and E. P. Dergunov, ““Fusion Diagram of LiF~-KF-NaF,"’ Compt. rend. acad.
sci.
U.R.S.S. 31, 753~54 (1941).
The system LiF~KF contains a single eutectic at 50 LiF=50 KF (mole %), m.p. 492°C.
1000
TEMPERATURE (°C)
300
700